AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.208 0.653 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.670
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 12.86
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.04e-05
Time: 06:20:10 Log-Likelihood: -100.35
No. Observations: 23 AIC: 208.7
Df Residuals: 19 BIC: 213.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 150.5665 108.692 1.385 0.182 -76.928 378.061
C(dose)[T.1] -176.2486 231.803 -0.760 0.456 -661.417 308.920
expression -10.5033 11.829 -0.888 0.386 -35.263 14.256
expression:C(dose)[T.1] 24.2398 24.190 1.002 0.329 -26.390 74.869
Omnibus: 0.506 Durbin-Watson: 2.059
Prob(Omnibus): 0.776 Jarque-Bera (JB): 0.597
Skew: -0.129 Prob(JB): 0.742
Kurtosis: 2.255 Cond. No. 599.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 18.79
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.56e-05
Time: 06:20:10 Log-Likelihood: -100.94
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 97.3848 94.864 1.027 0.317 -100.498 295.268
C(dose)[T.1] 55.8066 10.268 5.435 0.000 34.387 77.226
expression -4.7063 10.320 -0.456 0.653 -26.232 16.820
Omnibus: 0.631 Durbin-Watson: 1.994
Prob(Omnibus): 0.730 Jarque-Bera (JB): 0.635
Skew: 0.010 Prob(JB): 0.728
Kurtosis: 2.186 Cond. No. 208.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 06:20:11 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.140
Model: OLS Adj. R-squared: 0.099
Method: Least Squares F-statistic: 3.410
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0789
Time: 06:20:11 Log-Likelihood: -111.37
No. Observations: 23 AIC: 226.7
Df Residuals: 21 BIC: 229.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -154.6706 127.101 -1.217 0.237 -418.992 109.651
expression 24.8686 13.467 1.847 0.079 -3.137 52.874
Omnibus: 2.529 Durbin-Watson: 2.158
Prob(Omnibus): 0.282 Jarque-Bera (JB): 1.224
Skew: 0.123 Prob(JB): 0.542
Kurtosis: 1.897 Cond. No. 181.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.597 0.133 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.560
Model: OLS Adj. R-squared: 0.439
Method: Least Squares F-statistic: 4.658
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0246
Time: 06:20:11 Log-Likelihood: -69.151
No. Observations: 15 AIC: 146.3
Df Residuals: 11 BIC: 149.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 212.4522 223.075 0.952 0.361 -278.532 703.437
C(dose)[T.1] 202.5734 296.434 0.683 0.509 -449.873 855.020
expression -19.4090 29.820 -0.651 0.528 -85.043 46.225
expression:C(dose)[T.1] -22.8980 40.661 -0.563 0.585 -112.392 66.596
Omnibus: 1.136 Durbin-Watson: 0.617
Prob(Omnibus): 0.567 Jarque-Bera (JB): 0.981
Skew: -0.479 Prob(JB): 0.612
Kurtosis: 2.193 Cond. No. 404.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.547
Model: OLS Adj. R-squared: 0.471
Method: Least Squares F-statistic: 7.240
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00866
Time: 06:20:11 Log-Likelihood: -69.364
No. Observations: 15 AIC: 144.7
Df Residuals: 12 BIC: 146.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 304.4774 147.468 2.065 0.061 -16.827 625.782
C(dose)[T.1] 35.9113 16.481 2.179 0.050 0.002 71.820
expression -31.7250 19.687 -1.611 0.133 -74.619 11.169
Omnibus: 2.019 Durbin-Watson: 0.681
Prob(Omnibus): 0.364 Jarque-Bera (JB): 1.338
Skew: -0.500 Prob(JB): 0.512
Kurtosis: 1.931 Cond. No. 154.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 06:20:11 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.368
Model: OLS Adj. R-squared: 0.319
Method: Least Squares F-statistic: 7.555
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0166
Time: 06:20:11 Log-Likelihood: -71.864
No. Observations: 15 AIC: 147.7
Df Residuals: 13 BIC: 149.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 479.1654 140.484 3.411 0.005 175.668 782.663
expression -53.1821 19.349 -2.749 0.017 -94.982 -11.382
Omnibus: 0.146 Durbin-Watson: 1.413
Prob(Omnibus): 0.929 Jarque-Bera (JB): 0.357
Skew: 0.092 Prob(JB): 0.836
Kurtosis: 2.267 Cond. No. 129.