AIM Score vs. Gene Expression 
		Full X range:
		
		 
			
		
		Auto X range:
		
		 
		
		
		
		Group Comparisons: Boxplots
		
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  0.208  |   0.653  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.670 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.618 | 
  | Method: |              Least Squares |     F-statistic:        |     12.86 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  8.04e-05 | 
  | Time: |                  09:39:33 |        Log-Likelihood:     |   -100.35 | 
  | No. Observations: |           23 |         AIC:                |     208.7 | 
  | Df Residuals: |               19 |         BIC:                |     213.2 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                  150.5665 |    108.692 |      1.385 |   0.182 |    -76.928   378.061 | 
  | C(dose)[T.1] |              -176.2486 |    231.803 |     -0.760 |   0.456 |   -661.417   308.920 | 
  | expression |                 -10.5033 |     11.829 |     -0.888 |   0.386 |    -35.263    14.256 | 
  | expression:C(dose)[T.1] |     24.2398 |     24.190 |      1.002 |   0.329 |    -26.390    74.869 | 
  | Omnibus: |         0.506 |    Durbin-Watson:      |     2.059 | 
  | Prob(Omnibus): |   0.776 |    Jarque-Bera (JB):   |     0.597 | 
  | Skew: |           -0.129 |    Prob(JB):           |     0.742 | 
  | Kurtosis: |        2.255 |    Cond. No.           |      599. | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.653 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.618 | 
  | Method: |              Least Squares |     F-statistic:        |     18.79 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  2.56e-05 | 
  | Time: |                  09:39:33 |        Log-Likelihood:     |   -100.94 | 
  | No. Observations: |           23 |         AIC:                |     207.9 | 
  | Df Residuals: |               20 |         BIC:                |     211.3 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        97.3848 |     94.864 |      1.027 |   0.317 |   -100.498   295.268 | 
  | C(dose)[T.1] |     55.8066 |     10.268 |      5.435 |   0.000 |     34.387    77.226 | 
  | expression |       -4.7063 |     10.320 |     -0.456 |   0.653 |    -26.232    16.820 | 
  | Omnibus: |         0.631 |    Durbin-Watson:      |     1.994 | 
  | Prob(Omnibus): |   0.730 |    Jarque-Bera (JB):   |     0.635 | 
  | Skew: |            0.010 |    Prob(JB):           |     0.728 | 
  | Kurtosis: |        2.186 |    Cond. No.           |      208. | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.649 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.632 | 
  | Method: |              Least Squares |     F-statistic:        |     38.84 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  3.51e-06 | 
  | Time: |                  09:39:33 |        Log-Likelihood:     |   -101.06 | 
  | No. Observations: |           23 |         AIC:                |     206.1 | 
  | Df Residuals: |               21 |         BIC:                |     208.4 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        54.2083 |      5.919 |      9.159 |   0.000 |     41.900    66.517 | 
  | C(dose)[T.1] |     53.3371 |      8.558 |      6.232 |   0.000 |     35.539    71.135 | 
  | Omnibus: |         0.322 |    Durbin-Watson:      |     1.888 | 
  | Prob(Omnibus): |   0.851 |    Jarque-Bera (JB):   |     0.485 | 
  | Skew: |            0.060 |    Prob(JB):           |     0.785 | 
  | Kurtosis: |        2.299 |    Cond. No.           |      2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.140 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.099 | 
  | Method: |              Least Squares |     F-statistic:        |     3.410 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0789 |  
  | Time: |                  09:39:33 |        Log-Likelihood:     |   -111.37 | 
  | No. Observations: |           23 |         AIC:                |     226.7 | 
  | Df Residuals: |               21 |         BIC:                |     229.0 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |    -154.6706 |    127.101 |     -1.217 |   0.237 |   -418.992   109.651 | 
  | expression |     24.8686 |     13.467 |      1.847 |   0.079 |     -3.137    52.874 | 
  | Omnibus: |         2.529 |    Durbin-Watson:      |     2.158 | 
  | Prob(Omnibus): |   0.282 |    Jarque-Bera (JB):   |     1.224 | 
  | Skew: |            0.123 |    Prob(JB):           |     0.542 | 
  | Kurtosis: |        1.897 |    Cond. No.           |      181. | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  2.597  |   0.133  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.560 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.439 | 
  | Method: |              Least Squares |     F-statistic:        |     4.658 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0246 |  
  | Time: |                  09:39:33 |        Log-Likelihood:     |   -69.151 | 
  | No. Observations: |           15 |         AIC:                |     146.3 | 
  | Df Residuals: |               11 |         BIC:                |     149.1 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                  212.4522 |    223.075 |      0.952 |   0.361 |   -278.532   703.437 | 
  | C(dose)[T.1] |               202.5734 |    296.434 |      0.683 |   0.509 |   -449.873   855.020 | 
  | expression |                 -19.4090 |     29.820 |     -0.651 |   0.528 |    -85.043    46.225 | 
  | expression:C(dose)[T.1] |    -22.8980 |     40.661 |     -0.563 |   0.585 |   -112.392    66.596 | 
  | Omnibus: |         1.136 |    Durbin-Watson:      |     0.617 | 
  | Prob(Omnibus): |   0.567 |    Jarque-Bera (JB):   |     0.981 | 
  | Skew: |           -0.479 |    Prob(JB):           |     0.612 | 
  | Kurtosis: |        2.193 |    Cond. No.           |      404. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.547 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.471 | 
  | Method: |              Least Squares |     F-statistic:        |     7.240 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.00866 | 
  | Time: |                  09:39:33 |        Log-Likelihood:     |   -69.364 | 
  | No. Observations: |           15 |         AIC:                |     144.7 | 
  | Df Residuals: |               12 |         BIC:                |     146.9 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |       304.4774 |    147.468 |      2.065 |   0.061 |    -16.827   625.782 | 
  | C(dose)[T.1] |     35.9113 |     16.481 |      2.179 |   0.050 |      0.002    71.820 | 
  | expression |      -31.7250 |     19.687 |     -1.611 |   0.133 |    -74.619    11.169 | 
  | Omnibus: |         2.019 |    Durbin-Watson:      |     0.681 | 
  | Prob(Omnibus): |   0.364 |    Jarque-Bera (JB):   |     1.338 | 
  | Skew: |           -0.500 |    Prob(JB):           |     0.512 | 
  | Kurtosis: |        1.931 |    Cond. No.           |      154. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.449 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.406 | 
  | Method: |              Least Squares |     F-statistic:        |     10.58 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.00629 | 
  | Time: |                  09:39:33 |        Log-Likelihood:     |   -70.833 | 
  | No. Observations: |           15 |         AIC:                |     145.7 | 
  | Df Residuals: |               13 |         BIC:                |     147.1 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        67.4286 |     11.044 |      6.106 |   0.000 |     43.570    91.287 | 
  | C(dose)[T.1] |     49.1964 |     15.122 |      3.253 |   0.006 |     16.527    81.866 | 
  | Omnibus: |         2.713 |    Durbin-Watson:      |     0.810 | 
  | Prob(Omnibus): |   0.258 |    Jarque-Bera (JB):   |     1.868 | 
  | Skew: |           -0.843 |    Prob(JB):           |     0.393 | 
  | Kurtosis: |        2.619 |    Cond. No.           |      2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.368 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.319 | 
  | Method: |              Least Squares |     F-statistic:        |     7.555 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0166 |  
  | Time: |                  09:39:33 |        Log-Likelihood:     |   -71.864 | 
  | No. Observations: |           15 |         AIC:                |     147.7 | 
  | Df Residuals: |               13 |         BIC:                |     149.1 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |     479.1654 |    140.484 |      3.411 |   0.005 |    175.668   782.663 | 
  | expression |    -53.1821 |     19.349 |     -2.749 |   0.017 |    -94.982   -11.382 | 
  | Omnibus: |         0.146 |    Durbin-Watson:      |     1.413 | 
  | Prob(Omnibus): |   0.929 |    Jarque-Bera (JB):   |     0.357 | 
  | Skew: |            0.092 |    Prob(JB):           |     0.836 | 
  | Kurtosis: |        2.267 |    Cond. No.           |      129. |