AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.049 | 0.828 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.712 |
Model: | OLS | Adj. R-squared: | 0.667 |
Method: | Least Squares | F-statistic: | 15.66 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.27e-05 |
Time: | 04:08:21 | Log-Likelihood: | -98.789 |
No. Observations: | 23 | AIC: | 205.6 |
Df Residuals: | 19 | BIC: | 210.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 93.1346 | 45.032 | 2.068 | 0.053 | -1.119 187.388 |
C(dose)[T.1] | -134.9617 | 92.919 | -1.452 | 0.163 | -329.443 59.520 |
expression | -5.3866 | 6.183 | -0.871 | 0.394 | -18.327 7.554 |
expression:C(dose)[T.1] | 23.6321 | 11.673 | 2.024 | 0.057 | -0.801 48.065 |
Omnibus: | 1.390 | Durbin-Watson: | 2.159 |
Prob(Omnibus): | 0.499 | Jarque-Bera (JB): | 1.016 |
Skew: | -0.234 | Prob(JB): | 0.602 |
Kurtosis: | 2.083 | Cond. No. | 216. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.56 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.77e-05 |
Time: | 04:08:21 | Log-Likelihood: | -101.03 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 45.2313 | 41.175 | 1.099 | 0.285 | -40.658 131.121 |
C(dose)[T.1] | 52.1441 | 10.297 | 5.064 | 0.000 | 30.666 73.622 |
expression | 1.2422 | 5.636 | 0.220 | 0.828 | -10.514 12.998 |
Omnibus: | 0.399 | Durbin-Watson: | 1.865 |
Prob(Omnibus): | 0.819 | Jarque-Bera (JB): | 0.530 |
Skew: | 0.077 | Prob(JB): | 0.767 |
Kurtosis: | 2.272 | Cond. No. | 74.7 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:08:21 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.201 |
Model: | OLS | Adj. R-squared: | 0.163 |
Method: | Least Squares | F-statistic: | 5.282 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0319 |
Time: | 04:08:21 | Log-Likelihood: | -110.52 |
No. Observations: | 23 | AIC: | 225.0 |
Df Residuals: | 21 | BIC: | 227.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -45.1391 | 54.708 | -0.825 | 0.419 | -158.911 68.633 |
expression | 16.2451 | 7.068 | 2.298 | 0.032 | 1.545 30.945 |
Omnibus: | 3.967 | Durbin-Watson: | 2.277 |
Prob(Omnibus): | 0.138 | Jarque-Bera (JB): | 1.580 |
Skew: | -0.211 | Prob(JB): | 0.454 |
Kurtosis: | 1.787 | Cond. No. | 66.7 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.005 | 0.946 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.481 |
Model: | OLS | Adj. R-squared: | 0.339 |
Method: | Least Squares | F-statistic: | 3.398 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0573 |
Time: | 04:08:22 | Log-Likelihood: | -70.382 |
No. Observations: | 15 | AIC: | 148.8 |
Df Residuals: | 11 | BIC: | 151.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 199.9149 | 177.979 | 1.123 | 0.285 | -191.813 591.643 |
C(dose)[T.1] | -119.3619 | 205.309 | -0.581 | 0.573 | -571.245 332.521 |
expression | -19.3835 | 25.983 | -0.746 | 0.471 | -76.573 37.806 |
expression:C(dose)[T.1] | 24.7284 | 30.042 | 0.823 | 0.428 | -41.394 90.850 |
Omnibus: | 2.366 | Durbin-Watson: | 0.830 |
Prob(Omnibus): | 0.306 | Jarque-Bera (JB): | 1.376 |
Skew: | -0.738 | Prob(JB): | 0.503 |
Kurtosis: | 2.858 | Cond. No. | 266. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.889 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0280 |
Time: | 04:08:22 | Log-Likelihood: | -70.830 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 73.4790 | 88.684 | 0.829 | 0.424 | -119.747 266.706 |
C(dose)[T.1] | 49.1202 | 15.775 | 3.114 | 0.009 | 14.748 83.492 |
expression | -0.8852 | 12.866 | -0.069 | 0.946 | -28.917 27.147 |
Omnibus: | 2.630 | Durbin-Watson: | 0.799 |
Prob(Omnibus): | 0.268 | Jarque-Bera (JB): | 1.839 |
Skew: | -0.832 | Prob(JB): | 0.399 |
Kurtosis: | 2.584 | Cond. No. | 78.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:08:22 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.004 |
Model: | OLS | Adj. R-squared: | -0.073 |
Method: | Least Squares | F-statistic: | 0.04974 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.827 |
Time: | 04:08:22 | Log-Likelihood: | -75.271 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 118.7703 | 113.015 | 1.051 | 0.312 | -125.383 362.924 |
expression | -3.6976 | 16.579 | -0.223 | 0.827 | -39.515 32.120 |
Omnibus: | 0.892 | Durbin-Watson: | 1.569 |
Prob(Omnibus): | 0.640 | Jarque-Bera (JB): | 0.688 |
Skew: | 0.105 | Prob(JB): | 0.709 |
Kurtosis: | 1.972 | Cond. No. | 77.6 |