AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.049 | 0.826 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.595 |
Method: | Least Squares | F-statistic: | 11.78 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000138 |
Time: | 05:22:07 | Log-Likelihood: | -101.02 |
No. Observations: | 23 | AIC: | 210.0 |
Df Residuals: | 19 | BIC: | 214.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.9122 | 120.311 | 0.564 | 0.579 | -183.901 319.726 |
C(dose)[T.1] | 85.6744 | 233.723 | 0.367 | 0.718 | -403.514 574.863 |
expression | -1.5380 | 13.484 | -0.114 | 0.910 | -29.761 26.685 |
expression:C(dose)[T.1] | -3.5682 | 25.984 | -0.137 | 0.892 | -57.954 50.817 |
Omnibus: | 0.493 | Durbin-Watson: | 1.799 |
Prob(Omnibus): | 0.781 | Jarque-Bera (JB): | 0.580 |
Skew: | 0.083 | Prob(JB): | 0.748 |
Kurtosis: | 2.240 | Cond. No. | 560. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.57 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.76e-05 |
Time: | 05:22:07 | Log-Likelihood: | -101.03 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 76.4745 | 100.337 | 0.762 | 0.455 | -132.825 285.774 |
C(dose)[T.1] | 53.6031 | 8.840 | 6.063 | 0.000 | 35.162 72.044 |
expression | -2.4989 | 11.240 | -0.222 | 0.826 | -25.946 20.948 |
Omnibus: | 0.459 | Durbin-Watson: | 1.803 |
Prob(Omnibus): | 0.795 | Jarque-Bera (JB): | 0.559 |
Skew: | 0.053 | Prob(JB): | 0.756 |
Kurtosis: | 2.244 | Cond. No. | 209. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:22:07 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.006 |
Model: | OLS | Adj. R-squared: | -0.041 |
Method: | Least Squares | F-statistic: | 0.1348 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.717 |
Time: | 05:22:07 | Log-Likelihood: | -113.03 |
No. Observations: | 23 | AIC: | 230.1 |
Df Residuals: | 21 | BIC: | 232.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 19.4640 | 164.240 | 0.119 | 0.907 | -322.093 361.021 |
expression | 6.7238 | 18.310 | 0.367 | 0.717 | -31.355 44.802 |
Omnibus: | 3.688 | Durbin-Watson: | 2.549 |
Prob(Omnibus): | 0.158 | Jarque-Bera (JB): | 1.634 |
Skew: | 0.284 | Prob(JB): | 0.442 |
Kurtosis: | 1.824 | Cond. No. | 207. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
6.990 | 0.021 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.697 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 8.436 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00342 |
Time: | 05:22:07 | Log-Likelihood: | -66.344 |
No. Observations: | 15 | AIC: | 140.7 |
Df Residuals: | 11 | BIC: | 143.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -173.3121 | 184.359 | -0.940 | 0.367 | -579.084 232.459 |
C(dose)[T.1] | -332.2164 | 295.039 | -1.126 | 0.284 | -981.593 317.160 |
expression | 23.0265 | 17.613 | 1.307 | 0.218 | -15.740 61.793 |
expression:C(dose)[T.1] | 36.0067 | 28.059 | 1.283 | 0.226 | -25.751 97.764 |
Omnibus: | 5.872 | Durbin-Watson: | 0.513 |
Prob(Omnibus): | 0.053 | Jarque-Bera (JB): | 3.343 |
Skew: | -1.131 | Prob(JB): | 0.188 |
Kurtosis: | 3.484 | Cond. No. | 653. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.594 |
Method: | Least Squares | F-statistic: | 11.23 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00179 |
Time: | 05:22:07 | Log-Likelihood: | -67.390 |
No. Observations: | 15 | AIC: | 140.8 |
Df Residuals: | 12 | BIC: | 142.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -321.6437 | 147.441 | -2.182 | 0.050 | -642.889 -0.398 |
C(dose)[T.1] | 46.0662 | 12.568 | 3.665 | 0.003 | 18.684 73.449 |
expression | 37.2143 | 14.075 | 2.644 | 0.021 | 6.547 67.882 |
Omnibus: | 2.739 | Durbin-Watson: | 0.504 |
Prob(Omnibus): | 0.254 | Jarque-Bera (JB): | 1.746 |
Skew: | -0.627 | Prob(JB): | 0.418 |
Kurtosis: | 1.895 | Cond. No. | 251. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:22:07 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.262 |
Model: | OLS | Adj. R-squared: | 0.205 |
Method: | Least Squares | F-statistic: | 4.608 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0513 |
Time: | 05:22:07 | Log-Likelihood: | -73.025 |
No. Observations: | 15 | AIC: | 150.0 |
Df Residuals: | 13 | BIC: | 151.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -348.1071 | 205.989 | -1.690 | 0.115 | -793.120 96.906 |
expression | 42.0745 | 19.601 | 2.147 | 0.051 | -0.270 84.419 |
Omnibus: | 1.474 | Durbin-Watson: | 1.804 |
Prob(Omnibus): | 0.478 | Jarque-Bera (JB): | 0.844 |
Skew: | -0.095 | Prob(JB): | 0.656 |
Kurtosis: | 1.854 | Cond. No. | 250. |