AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.477 0.077 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.705
Model: OLS Adj. R-squared: 0.658
Method: Least Squares F-statistic: 15.12
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.86e-05
Time: 03:35:16 Log-Likelihood: -99.075
No. Observations: 23 AIC: 206.1
Df Residuals: 19 BIC: 210.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -7.7928 37.228 -0.209 0.836 -85.711 70.126
C(dose)[T.1] 77.5134 57.820 1.341 0.196 -43.505 198.532
expression 13.9796 8.295 1.685 0.108 -3.381 31.340
expression:C(dose)[T.1] -6.0614 12.370 -0.490 0.630 -31.952 19.829
Omnibus: 0.034 Durbin-Watson: 1.794
Prob(Omnibus): 0.983 Jarque-Bera (JB): 0.123
Skew: -0.064 Prob(JB): 0.940
Kurtosis: 2.665 Cond. No. 86.5

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.701
Model: OLS Adj. R-squared: 0.671
Method: Least Squares F-statistic: 23.45
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.70e-06
Time: 03:35:16 Log-Likelihood: -99.219
No. Observations: 23 AIC: 204.4
Df Residuals: 20 BIC: 207.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 4.2947 27.347 0.157 0.877 -52.750 61.340
C(dose)[T.1] 49.4901 8.353 5.925 0.000 32.066 66.915
expression 11.2542 6.035 1.865 0.077 -1.336 23.844
Omnibus: 0.039 Durbin-Watson: 1.912
Prob(Omnibus): 0.980 Jarque-Bera (JB): 0.078
Skew: 0.026 Prob(JB): 0.962
Kurtosis: 2.720 Cond. No. 33.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:35:16 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.176
Model: OLS Adj. R-squared: 0.137
Method: Least Squares F-statistic: 4.495
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0461
Time: 03:35:16 Log-Likelihood: -110.87
No. Observations: 23 AIC: 225.7
Df Residuals: 21 BIC: 228.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -12.6496 44.055 -0.287 0.777 -104.267 78.968
expression 20.0859 9.474 2.120 0.046 0.384 39.787
Omnibus: 1.403 Durbin-Watson: 2.090
Prob(Omnibus): 0.496 Jarque-Bera (JB): 1.262
Skew: 0.458 Prob(JB): 0.532
Kurtosis: 2.309 Cond. No. 32.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.565 0.467 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.474
Model: OLS Adj. R-squared: 0.330
Method: Least Squares F-statistic: 3.303
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0613
Time: 03:35:16 Log-Likelihood: -70.483
No. Observations: 15 AIC: 149.0
Df Residuals: 11 BIC: 151.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 22.7529 79.576 0.286 0.780 -152.392 197.898
C(dose)[T.1] 37.0734 149.494 0.248 0.809 -291.960 366.107
expression 10.1173 17.824 0.568 0.582 -29.113 49.348
expression:C(dose)[T.1] 2.8253 33.809 0.084 0.935 -71.588 77.239
Omnibus: 3.803 Durbin-Watson: 0.885
Prob(Omnibus): 0.149 Jarque-Bera (JB): 2.231
Skew: -0.945 Prob(JB): 0.328
Kurtosis: 3.031 Cond. No. 105.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.474
Model: OLS Adj. R-squared: 0.386
Method: Least Squares F-statistic: 5.397
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0213
Time: 03:35:16 Log-Likelihood: -70.488
No. Observations: 15 AIC: 147.0
Df Residuals: 12 BIC: 149.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 19.2855 65.031 0.297 0.772 -122.405 160.976
C(dose)[T.1] 49.4936 15.387 3.217 0.007 15.969 83.019
expression 10.9026 14.506 0.752 0.467 -20.703 42.508
Omnibus: 3.515 Durbin-Watson: 0.898
Prob(Omnibus): 0.172 Jarque-Bera (JB): 2.114
Skew: -0.919 Prob(JB): 0.347
Kurtosis: 2.945 Cond. No. 39.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:35:16 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.020
Model: OLS Adj. R-squared: -0.056
Method: Least Squares F-statistic: 0.2605
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.618
Time: 03:35:16 Log-Likelihood: -75.151
No. Observations: 15 AIC: 154.3
Df Residuals: 13 BIC: 155.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 50.9592 84.279 0.605 0.556 -131.114 233.033
expression 9.7036 19.012 0.510 0.618 -31.370 50.777
Omnibus: 1.218 Durbin-Watson: 1.591
Prob(Omnibus): 0.544 Jarque-Bera (JB): 0.772
Skew: 0.061 Prob(JB): 0.680
Kurtosis: 1.895 Cond. No. 39.0