AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.407 0.531 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.610
Method: Least Squares F-statistic: 12.45
Date: Thu, 03 Apr 2025 Prob (F-statistic): 9.86e-05
Time: 23:00:01 Log-Likelihood: -100.60
No. Observations: 23 AIC: 209.2
Df Residuals: 19 BIC: 213.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -95.5299 207.370 -0.461 0.650 -529.561 338.501
C(dose)[T.1] 842.2859 1293.368 0.651 0.523 -1864.765 3549.337
expression 13.0607 18.080 0.722 0.479 -24.781 50.902
expression:C(dose)[T.1] -66.3314 107.916 -0.615 0.546 -292.203 159.540
Omnibus: 0.145 Durbin-Watson: 1.707
Prob(Omnibus): 0.930 Jarque-Bera (JB): 0.364
Skew: -0.033 Prob(JB): 0.834
Kurtosis: 2.388 Cond. No. 3.97e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 19.08
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.32e-05
Time: 23:00:01 Log-Likelihood: -100.83
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -74.1850 201.237 -0.369 0.716 -493.958 345.588
C(dose)[T.1] 47.3513 12.779 3.705 0.001 20.694 74.009
expression 11.1989 17.545 0.638 0.531 -25.399 47.797
Omnibus: 0.450 Durbin-Watson: 1.799
Prob(Omnibus): 0.799 Jarque-Bera (JB): 0.552
Skew: 0.019 Prob(JB): 0.759
Kurtosis: 2.242 Cond. No. 549.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 23:00:02 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.420
Model: OLS Adj. R-squared: 0.392
Method: Least Squares F-statistic: 15.20
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.000826
Time: 23:00:02 Log-Likelihood: -106.84
No. Observations: 23 AIC: 217.7
Df Residuals: 21 BIC: 220.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -610.6408 177.130 -3.447 0.002 -979.003 -242.279
expression 58.9021 15.106 3.899 0.001 27.488 90.316
Omnibus: 3.069 Durbin-Watson: 1.780
Prob(Omnibus): 0.216 Jarque-Bera (JB): 1.651
Skew: 0.363 Prob(JB): 0.438
Kurtosis: 1.907 Cond. No. 381.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
6.377 0.027 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.564
Method: Least Squares F-statistic: 7.028
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00659
Time: 23:00:02 Log-Likelihood: -67.272
No. Observations: 15 AIC: 142.5
Df Residuals: 11 BIC: 145.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -534.5476 625.446 -0.855 0.411 -1911.144 842.049
C(dose)[T.1] -545.2025 799.870 -0.682 0.510 -2305.705 1215.300
expression 49.1469 51.057 0.963 0.356 -63.229 161.523
expression:C(dose)[T.1] 48.3292 65.243 0.741 0.474 -95.270 191.929
Omnibus: 1.669 Durbin-Watson: 0.995
Prob(Omnibus): 0.434 Jarque-Bera (JB): 1.240
Skew: -0.509 Prob(JB): 0.538
Kurtosis: 2.028 Cond. No. 2.13e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.640
Model: OLS Adj. R-squared: 0.580
Method: Least Squares F-statistic: 10.67
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00217
Time: 23:00:02 Log-Likelihood: -67.637
No. Observations: 15 AIC: 141.3
Df Residuals: 12 BIC: 143.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -897.0703 382.059 -2.348 0.037 -1729.505 -64.635
C(dose)[T.1] 47.2263 12.743 3.706 0.003 19.462 74.991
expression 78.7442 31.183 2.525 0.027 10.802 146.686
Omnibus: 3.289 Durbin-Watson: 1.090
Prob(Omnibus): 0.193 Jarque-Bera (JB): 1.281
Skew: -0.247 Prob(JB): 0.527
Kurtosis: 1.657 Cond. No. 744.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 23:00:02 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.228
Model: OLS Adj. R-squared: 0.169
Method: Least Squares F-statistic: 3.840
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0718
Time: 23:00:02 Log-Likelihood: -73.359
No. Observations: 15 AIC: 150.7
Df Residuals: 13 BIC: 152.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -958.6444 537.046 -1.785 0.098 -2118.861 201.572
expression 85.8200 43.792 1.960 0.072 -8.787 180.427
Omnibus: 1.445 Durbin-Watson: 2.035
Prob(Omnibus): 0.485 Jarque-Bera (JB): 0.827
Skew: 0.049 Prob(JB): 0.661
Kurtosis: 1.854 Cond. No. 743.