AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
| F-statistic | p-value | df difference |
| 5.700 | 0.027 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.785 |
| Model: | OLS | Adj. R-squared: | 0.751 |
| Method: | Least Squares | F-statistic: | 23.11 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 1.48e-06 |
| Time: | 19:55:12 | Log-Likelihood: | -95.433 |
| No. Observations: | 23 | AIC: | 198.9 |
| Df Residuals: | 19 | BIC: | 203.4 |
| Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | -108.1715 | 436.360 | -0.248 | 0.807 | -1021.483 805.140 |
| C(dose)[T.1] | 1231.1765 | 526.664 | 2.338 | 0.030 | 128.856 2333.497 |
| expression | 15.7942 | 42.441 | 0.372 | 0.714 | -73.035 104.624 |
| expression:C(dose)[T.1] | -116.7618 | 51.582 | -2.264 | 0.035 | -224.725 -8.799 |
| Omnibus: | 0.597 | Durbin-Watson: | 1.771 |
| Prob(Omnibus): | 0.742 | Jarque-Bera (JB): | 0.077 |
| Skew: | 0.130 | Prob(JB): | 0.962 |
| Kurtosis: | 3.113 | Cond. No. | 2.16e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.727 |
| Model: | OLS | Adj. R-squared: | 0.700 |
| Method: | Least Squares | F-statistic: | 26.62 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 2.31e-06 |
| Time: | 19:55:12 | Log-Likelihood: | -98.179 |
| No. Observations: | 23 | AIC: | 202.4 |
| Df Residuals: | 20 | BIC: | 205.8 |
| Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 704.4722 | 272.419 | 2.586 | 0.018 | 136.216 1272.728 |
| C(dose)[T.1] | 39.1872 | 9.746 | 4.021 | 0.001 | 18.858 59.516 |
| expression | -63.2491 | 26.492 | -2.387 | 0.027 | -118.511 -7.987 |
| Omnibus: | 0.518 | Durbin-Watson: | 2.131 |
| Prob(Omnibus): | 0.772 | Jarque-Bera (JB): | 0.407 |
| Skew: | -0.295 | Prob(JB): | 0.816 |
| Kurtosis: | 2.725 | Cond. No. | 725. |
Model:
AIM ~ C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.649 |
| Model: | OLS | Adj. R-squared: | 0.632 |
| Method: | Least Squares | F-statistic: | 38.84 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 3.51e-06 |
| Time: | 19:55:12 | Log-Likelihood: | -101.06 |
| No. Observations: | 23 | AIC: | 206.1 |
| Df Residuals: | 21 | BIC: | 208.4 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
| C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
| Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
| Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
| Skew: | 0.060 | Prob(JB): | 0.785 |
| Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.506 |
| Model: | OLS | Adj. R-squared: | 0.483 |
| Method: | Least Squares | F-statistic: | 21.52 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 0.000141 |
| Time: | 19:55:12 | Log-Likelihood: | -104.99 |
| No. Observations: | 23 | AIC: | 214.0 |
| Df Residuals: | 21 | BIC: | 216.3 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 1382.3040 | 280.842 | 4.922 | 0.000 | 798.261 1966.347 |
| expression | -128.0309 | 27.599 | -4.639 | 0.000 | -185.427 -70.635 |
| Omnibus: | 2.193 | Durbin-Watson: | 2.144 |
| Prob(Omnibus): | 0.334 | Jarque-Bera (JB): | 1.740 |
| Skew: | -0.652 | Prob(JB): | 0.419 |
| Kurtosis: | 2.661 | Cond. No. | 569. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
| F-statistic | p-value | df difference |
| 1.647 | 0.224 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.523 |
| Model: | OLS | Adj. R-squared: | 0.393 |
| Method: | Least Squares | F-statistic: | 4.016 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 0.0372 |
| Time: | 19:55:13 | Log-Likelihood: | -69.753 |
| No. Observations: | 15 | AIC: | 147.5 |
| Df Residuals: | 11 | BIC: | 150.3 |
| Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | -231.0495 | 236.432 | -0.977 | 0.349 | -751.434 289.335 |
| C(dose)[T.1] | 224.1830 | 445.290 | 0.503 | 0.625 | -755.893 1204.259 |
| expression | 33.2096 | 26.277 | 1.264 | 0.232 | -24.625 91.045 |
| expression:C(dose)[T.1] | -19.9705 | 48.225 | -0.414 | 0.687 | -126.113 86.172 |
| Omnibus: | 3.671 | Durbin-Watson: | 1.229 |
| Prob(Omnibus): | 0.160 | Jarque-Bera (JB): | 2.025 |
| Skew: | -0.898 | Prob(JB): | 0.363 |
| Kurtosis: | 3.123 | Cond. No. | 665. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.515 |
| Model: | OLS | Adj. R-squared: | 0.435 |
| Method: | Least Squares | F-statistic: | 6.378 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 0.0130 |
| Time: | 19:55:13 | Log-Likelihood: | -69.869 |
| No. Observations: | 15 | AIC: | 145.7 |
| Df Residuals: | 12 | BIC: | 147.9 |
| Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | -177.7605 | 191.376 | -0.929 | 0.371 | -594.733 239.212 |
| C(dose)[T.1] | 39.9188 | 16.435 | 2.429 | 0.032 | 4.110 75.728 |
| expression | 27.2805 | 21.259 | 1.283 | 0.224 | -19.039 73.601 |
| Omnibus: | 4.673 | Durbin-Watson: | 1.069 |
| Prob(Omnibus): | 0.097 | Jarque-Bera (JB): | 2.471 |
| Skew: | -0.973 | Prob(JB): | 0.291 |
| Kurtosis: | 3.406 | Cond. No. | 242. |
Model:
AIM ~ C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.449 |
| Model: | OLS | Adj. R-squared: | 0.406 |
| Method: | Least Squares | F-statistic: | 10.58 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 0.00629 |
| Time: | 19:55:13 | Log-Likelihood: | -70.833 |
| No. Observations: | 15 | AIC: | 145.7 |
| Df Residuals: | 13 | BIC: | 147.1 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
| C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
| Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
| Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
| Skew: | -0.843 | Prob(JB): | 0.393 |
| Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.277 |
| Model: | OLS | Adj. R-squared: | 0.221 |
| Method: | Least Squares | F-statistic: | 4.980 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 0.0439 |
| Time: | 19:55:13 | Log-Likelihood: | -72.868 |
| No. Observations: | 15 | AIC: | 149.7 |
| Df Residuals: | 13 | BIC: | 151.2 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | -364.7447 | 205.591 | -1.774 | 0.099 | -808.897 79.407 |
| expression | 49.9954 | 22.402 | 2.232 | 0.044 | 1.598 98.393 |
| Omnibus: | 0.750 | Durbin-Watson: | 1.878 |
| Prob(Omnibus): | 0.687 | Jarque-Bera (JB): | 0.652 |
| Skew: | 0.140 | Prob(JB): | 0.722 |
| Kurtosis: | 2.018 | Cond. No. | 221. |