AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.065 | 0.801 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.595 |
Method: | Least Squares | F-statistic: | 11.77 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000138 |
Time: | 05:02:30 | Log-Likelihood: | -101.02 |
No. Observations: | 23 | AIC: | 210.0 |
Df Residuals: | 19 | BIC: | 214.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 10.6743 | 223.415 | 0.048 | 0.962 | -456.939 478.288 |
C(dose)[T.1] | 47.5211 | 385.385 | 0.123 | 0.903 | -759.099 854.141 |
expression | 4.5018 | 23.094 | 0.195 | 0.848 | -43.835 52.838 |
expression:C(dose)[T.1] | 0.9387 | 41.608 | 0.023 | 0.982 | -86.148 88.025 |
Omnibus: | 0.231 | Durbin-Watson: | 1.847 |
Prob(Omnibus): | 0.891 | Jarque-Bera (JB): | 0.427 |
Skew: | 0.061 | Prob(JB): | 0.808 |
Kurtosis: | 2.344 | Cond. No. | 974. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.59 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.74e-05 |
Time: | 05:02:30 | Log-Likelihood: | -101.03 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 7.8779 | 181.170 | 0.043 | 0.966 | -370.036 385.792 |
C(dose)[T.1] | 56.2090 | 14.235 | 3.949 | 0.001 | 26.515 85.902 |
expression | 4.7910 | 18.724 | 0.256 | 0.801 | -34.267 43.849 |
Omnibus: | 0.240 | Durbin-Watson: | 1.845 |
Prob(Omnibus): | 0.887 | Jarque-Bera (JB): | 0.433 |
Skew: | 0.061 | Prob(JB): | 0.805 |
Kurtosis: | 2.339 | Cond. No. | 395. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:02:30 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.377 |
Model: | OLS | Adj. R-squared: | 0.348 |
Method: | Least Squares | F-statistic: | 12.73 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00181 |
Time: | 05:02:30 | Log-Likelihood: | -107.65 |
No. Observations: | 23 | AIC: | 219.3 |
Df Residuals: | 21 | BIC: | 221.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 581.7889 | 140.807 | 4.132 | 0.000 | 288.965 874.613 |
expression | -53.5046 | 14.993 | -3.569 | 0.002 | -84.685 -22.325 |
Omnibus: | 2.170 | Durbin-Watson: | 2.383 |
Prob(Omnibus): | 0.338 | Jarque-Bera (JB): | 1.294 |
Skew: | 0.277 | Prob(JB): | 0.524 |
Kurtosis: | 1.979 | Cond. No. | 235. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.173 | 0.685 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.495 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 3.599 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0496 |
Time: | 05:02:30 | Log-Likelihood: | -70.171 |
No. Observations: | 15 | AIC: | 148.3 |
Df Residuals: | 11 | BIC: | 151.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -445.7584 | 509.477 | -0.875 | 0.400 | -1567.111 675.594 |
C(dose)[T.1] | 562.4899 | 558.884 | 1.006 | 0.336 | -667.605 1792.585 |
expression | 52.9749 | 52.579 | 1.008 | 0.335 | -62.750 168.700 |
expression:C(dose)[T.1] | -52.9858 | 57.648 | -0.919 | 0.378 | -179.868 73.896 |
Omnibus: | 2.545 | Durbin-Watson: | 1.110 |
Prob(Omnibus): | 0.280 | Jarque-Bera (JB): | 1.650 |
Skew: | -0.800 | Prob(JB): | 0.438 |
Kurtosis: | 2.719 | Cond. No. | 1.07e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.457 |
Model: | OLS | Adj. R-squared: | 0.366 |
Method: | Least Squares | F-statistic: | 5.041 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0258 |
Time: | 05:02:30 | Log-Likelihood: | -70.726 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 12 | BIC: | 149.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -18.7673 | 207.813 | -0.090 | 0.930 | -471.552 434.017 |
C(dose)[T.1] | 49.0058 | 15.634 | 3.134 | 0.009 | 14.941 83.070 |
expression | 8.8978 | 21.420 | 0.415 | 0.685 | -37.771 55.567 |
Omnibus: | 2.774 | Durbin-Watson: | 0.794 |
Prob(Omnibus): | 0.250 | Jarque-Bera (JB): | 2.022 |
Skew: | -0.862 | Prob(JB): | 0.364 |
Kurtosis: | 2.485 | Cond. No. | 262. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:02:30 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.012 |
Model: | OLS | Adj. R-squared: | -0.064 |
Method: | Least Squares | F-statistic: | 0.1535 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.702 |
Time: | 05:02:30 | Log-Likelihood: | -75.212 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -11.7448 | 269.248 | -0.044 | 0.966 | -593.419 569.929 |
expression | 10.8685 | 27.741 | 0.392 | 0.702 | -49.063 70.800 |
Omnibus: | 1.053 | Durbin-Watson: | 1.599 |
Prob(Omnibus): | 0.591 | Jarque-Bera (JB): | 0.736 |
Skew: | 0.103 | Prob(JB): | 0.692 |
Kurtosis: | 1.935 | Cond. No. | 261. |