AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.227 | 0.151 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.686 |
Model: | OLS | Adj. R-squared: | 0.636 |
Method: | Least Squares | F-statistic: | 13.81 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 5.13e-05 |
Time: | 22:50:41 | Log-Likelihood: | -99.796 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 19 | BIC: | 212.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 545.1736 | 399.008 | 1.366 | 0.188 | -289.959 1380.306 |
C(dose)[T.1] | 369.0747 | 1044.727 | 0.353 | 0.728 | -1817.564 2555.714 |
expression | -45.3055 | 36.816 | -1.231 | 0.233 | -122.362 31.751 |
expression:C(dose)[T.1] | -28.0247 | 95.175 | -0.294 | 0.772 | -227.228 171.179 |
Omnibus: | 2.618 | Durbin-Watson: | 1.974 |
Prob(Omnibus): | 0.270 | Jarque-Bera (JB): | 1.337 |
Skew: | 0.226 | Prob(JB): | 0.512 |
Kurtosis: | 1.909 | Cond. No. | 3.11e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.684 |
Model: | OLS | Adj. R-squared: | 0.653 |
Method: | Least Squares | F-statistic: | 21.67 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 9.86e-06 |
Time: | 22:50:42 | Log-Likelihood: | -99.848 |
No. Observations: | 23 | AIC: | 205.7 |
Df Residuals: | 20 | BIC: | 209.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 590.6163 | 359.454 | 1.643 | 0.116 | -159.192 1340.425 |
C(dose)[T.1] | 61.4648 | 9.943 | 6.182 | 0.000 | 40.724 82.205 |
expression | -49.4989 | 33.166 | -1.492 | 0.151 | -118.681 19.683 |
Omnibus: | 1.746 | Durbin-Watson: | 1.996 |
Prob(Omnibus): | 0.418 | Jarque-Bera (JB): | 1.078 |
Skew: | 0.183 | Prob(JB): | 0.583 |
Kurtosis: | 2.005 | Cond. No. | 953. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:50:42 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.081 |
Model: | OLS | Adj. R-squared: | 0.037 |
Method: | Least Squares | F-statistic: | 1.847 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.189 |
Time: | 22:50:42 | Log-Likelihood: | -112.14 |
No. Observations: | 23 | AIC: | 228.3 |
Df Residuals: | 21 | BIC: | 230.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -605.7083 | 504.344 | -1.201 | 0.243 | -1654.549 443.133 |
expression | 62.7949 | 46.201 | 1.359 | 0.189 | -33.285 158.875 |
Omnibus: | 3.233 | Durbin-Watson: | 2.364 |
Prob(Omnibus): | 0.199 | Jarque-Bera (JB): | 1.336 |
Skew: | 0.066 | Prob(JB): | 0.513 |
Kurtosis: | 1.827 | Cond. No. | 802. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.017 | 0.899 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.451 |
Model: | OLS | Adj. R-squared: | 0.301 |
Method: | Least Squares | F-statistic: | 3.014 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0761 |
Time: | 22:50:42 | Log-Likelihood: | -70.801 |
No. Observations: | 15 | AIC: | 149.6 |
Df Residuals: | 11 | BIC: | 152.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 209.8814 | 675.981 | 0.310 | 0.762 | -1277.943 1697.706 |
C(dose)[T.1] | -132.5325 | 1017.973 | -0.130 | 0.899 | -2373.076 2108.010 |
expression | -13.1198 | 62.248 | -0.211 | 0.837 | -150.126 123.886 |
expression:C(dose)[T.1] | 16.7531 | 93.975 | 0.178 | 0.862 | -190.084 223.590 |
Omnibus: | 2.354 | Durbin-Watson: | 0.859 |
Prob(Omnibus): | 0.308 | Jarque-Bera (JB): | 1.683 |
Skew: | -0.786 | Prob(JB): | 0.431 |
Kurtosis: | 2.532 | Cond. No. | 1.76e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 4.900 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0278 |
Time: | 22:50:42 | Log-Likelihood: | -70.823 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 130.0703 | 485.619 | 0.268 | 0.793 | -928.003 1188.143 |
C(dose)[T.1] | 48.9203 | 15.874 | 3.082 | 0.010 | 14.335 83.506 |
expression | -5.7693 | 44.713 | -0.129 | 0.899 | -103.190 91.651 |
Omnibus: | 2.677 | Durbin-Watson: | 0.826 |
Prob(Omnibus): | 0.262 | Jarque-Bera (JB): | 1.797 |
Skew: | -0.831 | Prob(JB): | 0.407 |
Kurtosis: | 2.666 | Cond. No. | 677. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:50:42 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.014 |
Model: | OLS | Adj. R-squared: | -0.062 |
Method: | Least Squares | F-statistic: | 0.1826 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.676 |
Time: | 22:50:42 | Log-Likelihood: | -75.195 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 357.3987 | 617.238 | 0.579 | 0.572 | -976.063 1690.860 |
expression | -24.3468 | 56.973 | -0.427 | 0.676 | -147.431 98.737 |
Omnibus: | 0.952 | Durbin-Watson: | 1.575 |
Prob(Omnibus): | 0.621 | Jarque-Bera (JB): | 0.701 |
Skew: | 0.079 | Prob(JB): | 0.704 |
Kurtosis: | 1.953 | Cond. No. | 668. |