AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.354 | 0.559 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.679 |
Model: | OLS | Adj. R-squared: | 0.628 |
Method: | Least Squares | F-statistic: | 13.39 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.25e-05 |
Time: | 03:55:41 | Log-Likelihood: | -100.04 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 19 | BIC: | 212.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 127.6788 | 61.270 | 2.084 | 0.051 | -0.562 255.919 |
C(dose)[T.1] | -65.7338 | 101.917 | -0.645 | 0.527 | -279.049 147.581 |
expression | -13.5790 | 11.271 | -1.205 | 0.243 | -37.169 10.011 |
expression:C(dose)[T.1] | 21.6364 | 18.246 | 1.186 | 0.250 | -16.553 59.825 |
Omnibus: | 0.452 | Durbin-Watson: | 2.179 |
Prob(Omnibus): | 0.798 | Jarque-Bera (JB): | 0.571 |
Skew: | 0.146 | Prob(JB): | 0.751 |
Kurtosis: | 2.285 | Cond. No. | 168. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.655 |
Model: | OLS | Adj. R-squared: | 0.621 |
Method: | Least Squares | F-statistic: | 19.00 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.38e-05 |
Time: | 03:55:41 | Log-Likelihood: | -100.86 |
No. Observations: | 23 | AIC: | 207.7 |
Df Residuals: | 20 | BIC: | 211.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 83.0112 | 48.812 | 1.701 | 0.105 | -18.809 184.831 |
C(dose)[T.1] | 54.6617 | 8.974 | 6.091 | 0.000 | 35.942 73.382 |
expression | -5.3234 | 8.953 | -0.595 | 0.559 | -23.999 13.352 |
Omnibus: | 0.028 | Durbin-Watson: | 2.013 |
Prob(Omnibus): | 0.986 | Jarque-Bera (JB): | 0.084 |
Skew: | -0.007 | Prob(JB): | 0.959 |
Kurtosis: | 2.705 | Cond. No. | 64.7 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:55:41 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.015 |
Model: | OLS | Adj. R-squared: | -0.031 |
Method: | Least Squares | F-statistic: | 0.3298 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.572 |
Time: | 03:55:41 | Log-Likelihood: | -112.93 |
No. Observations: | 23 | AIC: | 229.9 |
Df Residuals: | 21 | BIC: | 232.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 34.3021 | 79.401 | 0.432 | 0.670 | -130.821 199.425 |
expression | 8.2131 | 14.301 | 0.574 | 0.572 | -21.527 37.953 |
Omnibus: | 1.977 | Durbin-Watson: | 2.401 |
Prob(Omnibus): | 0.372 | Jarque-Bera (JB): | 1.135 |
Skew: | 0.178 | Prob(JB): | 0.567 |
Kurtosis: | 1.972 | Cond. No. | 63.5 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.679 | 0.079 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.674 |
Model: | OLS | Adj. R-squared: | 0.585 |
Method: | Least Squares | F-statistic: | 7.588 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00503 |
Time: | 03:55:41 | Log-Likelihood: | -66.889 |
No. Observations: | 15 | AIC: | 141.8 |
Df Residuals: | 11 | BIC: | 144.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 143.0464 | 93.406 | 1.531 | 0.154 | -62.539 348.632 |
C(dose)[T.1] | 392.7247 | 184.607 | 2.127 | 0.057 | -13.591 799.041 |
expression | -12.1721 | 14.962 | -0.814 | 0.433 | -45.103 20.759 |
expression:C(dose)[T.1] | -50.7281 | 28.163 | -1.801 | 0.099 | -112.715 11.259 |
Omnibus: | 0.684 | Durbin-Watson: | 1.669 |
Prob(Omnibus): | 0.710 | Jarque-Bera (JB): | 0.199 |
Skew: | -0.280 | Prob(JB): | 0.905 |
Kurtosis: | 2.922 | Cond. No. | 238. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.578 |
Model: | OLS | Adj. R-squared: | 0.508 |
Method: | Least Squares | F-statistic: | 8.222 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00564 |
Time: | 03:55:41 | Log-Likelihood: | -68.827 |
No. Observations: | 15 | AIC: | 143.7 |
Df Residuals: | 12 | BIC: | 145.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 231.9890 | 86.383 | 2.686 | 0.020 | 43.776 420.203 |
C(dose)[T.1] | 61.1509 | 15.115 | 4.046 | 0.002 | 28.219 94.083 |
expression | -26.4892 | 13.811 | -1.918 | 0.079 | -56.580 3.601 |
Omnibus: | 0.802 | Durbin-Watson: | 1.421 |
Prob(Omnibus): | 0.670 | Jarque-Bera (JB): | 0.768 |
Skew: | -0.394 | Prob(JB): | 0.681 |
Kurtosis: | 2.220 | Cond. No. | 83.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:55:41 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.003 |
Model: | OLS | Adj. R-squared: | -0.074 |
Method: | Least Squares | F-statistic: | 0.03443 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.856 |
Time: | 03:55:41 | Log-Likelihood: | -75.280 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 115.9224 | 120.365 | 0.963 | 0.353 | -144.111 375.955 |
expression | -3.4489 | 18.586 | -0.186 | 0.856 | -43.601 36.704 |
Omnibus: | 0.445 | Durbin-Watson: | 1.710 |
Prob(Omnibus): | 0.800 | Jarque-Bera (JB): | 0.520 |
Skew: | 0.062 | Prob(JB): | 0.771 |
Kurtosis: | 2.096 | Cond. No. | 78.6 |