AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.017 0.898 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.596
Method: Least Squares F-statistic: 11.83
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000134
Time: 04:49:44 Log-Likelihood: -100.99
No. Observations: 23 AIC: 210.0
Df Residuals: 19 BIC: 214.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 72.9500 55.861 1.306 0.207 -43.968 189.868
C(dose)[T.1] 30.9274 67.944 0.455 0.654 -111.281 173.136
expression -2.9053 8.606 -0.338 0.739 -20.918 15.107
expression:C(dose)[T.1] 3.5331 10.801 0.327 0.747 -19.073 26.139
Omnibus: 0.317 Durbin-Watson: 1.882
Prob(Omnibus): 0.853 Jarque-Bera (JB): 0.481
Skew: -0.041 Prob(JB): 0.786
Kurtosis: 2.296 Cond. No. 133.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.52
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.81e-05
Time: 04:49:44 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 58.4803 33.344 1.754 0.095 -11.074 128.034
C(dose)[T.1] 52.9344 9.295 5.695 0.000 33.545 72.324
expression -0.6622 5.083 -0.130 0.898 -11.265 9.940
Omnibus: 0.334 Durbin-Watson: 1.909
Prob(Omnibus): 0.846 Jarque-Bera (JB): 0.490
Skew: 0.016 Prob(JB): 0.783
Kurtosis: 2.285 Cond. No. 49.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:49:44 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.081
Model: OLS Adj. R-squared: 0.037
Method: Least Squares F-statistic: 1.845
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.189
Time: 04:49:44 Log-Likelihood: -112.14
No. Observations: 23 AIC: 228.3
Df Residuals: 21 BIC: 230.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 143.0946 47.166 3.034 0.006 45.006 241.183
expression -10.2885 7.574 -1.358 0.189 -26.040 5.463
Omnibus: 1.461 Durbin-Watson: 2.479
Prob(Omnibus): 0.482 Jarque-Bera (JB): 0.999
Skew: 0.189 Prob(JB): 0.607
Kurtosis: 2.052 Cond. No. 43.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
6.032 0.030 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.929
Model: OLS Adj. R-squared: 0.909
Method: Least Squares F-statistic: 47.75
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.35e-06
Time: 04:49:44 Log-Likelihood: -55.495
No. Observations: 15 AIC: 119.0
Df Residuals: 11 BIC: 121.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 509.7777 107.676 4.734 0.001 272.785 746.771
C(dose)[T.1] -708.7947 115.563 -6.133 0.000 -963.146 -454.443
expression -61.5058 14.960 -4.111 0.002 -94.432 -28.580
expression:C(dose)[T.1] 109.8369 16.269 6.751 0.000 74.029 145.645
Omnibus: 3.056 Durbin-Watson: 1.287
Prob(Omnibus): 0.217 Jarque-Bera (JB): 1.546
Skew: 0.480 Prob(JB): 0.462
Kurtosis: 1.754 Cond. No. 420.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.633
Model: OLS Adj. R-squared: 0.572
Method: Least Squares F-statistic: 10.36
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00244
Time: 04:49:44 Log-Likelihood: -67.779
No. Observations: 15 AIC: 141.6
Df Residuals: 12 BIC: 143.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -158.1132 92.308 -1.713 0.112 -359.234 43.008
C(dose)[T.1] 69.9308 15.367 4.551 0.001 36.450 103.412
expression 31.3601 12.768 2.456 0.030 3.540 59.180
Omnibus: 7.580 Durbin-Watson: 0.906
Prob(Omnibus): 0.023 Jarque-Bera (JB): 4.139
Skew: -1.091 Prob(JB): 0.126
Kurtosis: 4.364 Cond. No. 102.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:49:44 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.077
Method: Least Squares F-statistic: 0.001106
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.974
Time: 04:49:44 Log-Likelihood: -75.299
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 97.5156 116.191 0.839 0.416 -153.500 348.532
expression -0.5628 16.924 -0.033 0.974 -37.124 35.998
Omnibus: 0.628 Durbin-Watson: 1.612
Prob(Omnibus): 0.730 Jarque-Bera (JB): 0.591
Skew: 0.057 Prob(JB): 0.744
Kurtosis: 2.034 Cond. No. 80.2