AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.089 | 0.094 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.722 |
Model: | OLS | Adj. R-squared: | 0.678 |
Method: | Least Squares | F-statistic: | 16.42 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.65e-05 |
Time: | 06:20:47 | Log-Likelihood: | -98.398 |
No. Observations: | 23 | AIC: | 204.8 |
Df Residuals: | 19 | BIC: | 209.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 113.1539 | 128.081 | 0.883 | 0.388 | -154.923 381.231 |
C(dose)[T.1] | 314.6987 | 195.135 | 1.613 | 0.123 | -93.724 723.121 |
expression | -7.6814 | 16.675 | -0.461 | 0.650 | -42.583 27.220 |
expression:C(dose)[T.1] | -33.2144 | 25.116 | -1.322 | 0.202 | -85.783 19.354 |
Omnibus: | 1.790 | Durbin-Watson: | 1.596 |
Prob(Omnibus): | 0.409 | Jarque-Bera (JB): | 1.482 |
Skew: | 0.476 | Prob(JB): | 0.477 |
Kurtosis: | 2.201 | Cond. No. | 486. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.696 |
Model: | OLS | Adj. R-squared: | 0.666 |
Method: | Least Squares | F-statistic: | 22.90 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.74e-06 |
Time: | 06:20:47 | Log-Likelihood: | -99.411 |
No. Observations: | 23 | AIC: | 204.8 |
Df Residuals: | 20 | BIC: | 208.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 225.5040 | 97.628 | 2.310 | 0.032 | 21.856 429.152 |
C(dose)[T.1] | 56.8747 | 8.407 | 6.765 | 0.000 | 39.339 74.411 |
expression | -22.3222 | 12.701 | -1.758 | 0.094 | -48.816 4.172 |
Omnibus: | 0.867 | Durbin-Watson: | 1.665 |
Prob(Omnibus): | 0.648 | Jarque-Bera (JB): | 0.829 |
Skew: | 0.395 | Prob(JB): | 0.661 |
Kurtosis: | 2.509 | Cond. No. | 189. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 06:20:47 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.047 |
Method: | Least Squares | F-statistic: | 0.006418 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.937 |
Time: | 06:20:47 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 93.2664 | 169.276 | 0.551 | 0.587 | -258.763 445.296 |
expression | -1.7483 | 21.823 | -0.080 | 0.937 | -47.133 43.636 |
Omnibus: | 3.435 | Durbin-Watson: | 2.486 |
Prob(Omnibus): | 0.179 | Jarque-Bera (JB): | 1.589 |
Skew: | 0.285 | Prob(JB): | 0.452 |
Kurtosis: | 1.845 | Cond. No. | 185. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
13.351 | 0.003 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.760 |
Model: | OLS | Adj. R-squared: | 0.694 |
Method: | Least Squares | F-statistic: | 11.61 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000984 |
Time: | 06:20:47 | Log-Likelihood: | -64.599 |
No. Observations: | 15 | AIC: | 137.2 |
Df Residuals: | 11 | BIC: | 140.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -337.0276 | 170.525 | -1.976 | 0.074 | -712.350 38.295 |
C(dose)[T.1] | -245.1964 | 292.912 | -0.837 | 0.420 | -889.891 399.498 |
expression | 50.9694 | 21.466 | 2.374 | 0.037 | 3.723 98.216 |
expression:C(dose)[T.1] | 35.6679 | 36.492 | 0.977 | 0.349 | -44.650 115.986 |
Omnibus: | 2.151 | Durbin-Watson: | 1.316 |
Prob(Omnibus): | 0.341 | Jarque-Bera (JB): | 0.536 |
Skew: | 0.344 | Prob(JB): | 0.765 |
Kurtosis: | 3.620 | Cond. No. | 549. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.739 |
Model: | OLS | Adj. R-squared: | 0.696 |
Method: | Least Squares | F-statistic: | 17.00 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000316 |
Time: | 06:20:47 | Log-Likelihood: | -65.224 |
No. Observations: | 15 | AIC: | 136.4 |
Df Residuals: | 12 | BIC: | 138.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -434.9672 | 137.722 | -3.158 | 0.008 | -735.038 -134.897 |
C(dose)[T.1] | 40.8963 | 11.065 | 3.696 | 0.003 | 16.788 65.004 |
expression | 63.3118 | 17.327 | 3.654 | 0.003 | 25.559 101.064 |
Omnibus: | 0.589 | Durbin-Watson: | 1.454 |
Prob(Omnibus): | 0.745 | Jarque-Bera (JB): | 0.015 |
Skew: | 0.073 | Prob(JB): | 0.992 |
Kurtosis: | 3.054 | Cond. No. | 208. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 06:20:47 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.442 |
Model: | OLS | Adj. R-squared: | 0.399 |
Method: | Least Squares | F-statistic: | 10.30 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00685 |
Time: | 06:20:47 | Log-Likelihood: | -70.924 |
No. Observations: | 15 | AIC: | 145.8 |
Df Residuals: | 13 | BIC: | 147.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -518.4082 | 190.878 | -2.716 | 0.018 | -930.776 -106.041 |
expression | 76.4598 | 23.825 | 3.209 | 0.007 | 24.988 127.932 |
Omnibus: | 1.242 | Durbin-Watson: | 1.988 |
Prob(Omnibus): | 0.537 | Jarque-Bera (JB): | 0.936 |
Skew: | 0.560 | Prob(JB): | 0.626 |
Kurtosis: | 2.508 | Cond. No. | 205. |