AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.866 | 0.363 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.664 |
Model: | OLS | Adj. R-squared: | 0.611 |
Method: | Least Squares | F-statistic: | 12.53 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.49e-05 |
Time: | 05:05:02 | Log-Likelihood: | -100.56 |
No. Observations: | 23 | AIC: | 209.1 |
Df Residuals: | 19 | BIC: | 213.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 256.8551 | 326.773 | 0.786 | 0.442 | -427.089 940.799 |
C(dose)[T.1] | 144.5059 | 538.973 | 0.268 | 0.792 | -983.578 1272.590 |
expression | -19.0465 | 30.708 | -0.620 | 0.542 | -83.318 45.225 |
expression:C(dose)[T.1] | -8.8993 | 51.035 | -0.174 | 0.863 | -115.716 97.918 |
Omnibus: | 0.439 | Durbin-Watson: | 1.940 |
Prob(Omnibus): | 0.803 | Jarque-Bera (JB): | 0.547 |
Skew: | 0.040 | Prob(JB): | 0.761 |
Kurtosis: | 2.248 | Cond. No. | 1.60e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.664 |
Model: | OLS | Adj. R-squared: | 0.630 |
Method: | Least Squares | F-statistic: | 19.73 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.85e-05 |
Time: | 05:05:02 | Log-Likelihood: | -100.58 |
No. Observations: | 23 | AIC: | 207.2 |
Df Residuals: | 20 | BIC: | 210.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 291.1351 | 254.621 | 1.143 | 0.266 | -239.995 822.265 |
C(dose)[T.1] | 50.5352 | 9.098 | 5.554 | 0.000 | 31.556 69.514 |
expression | -22.2684 | 23.925 | -0.931 | 0.363 | -72.175 27.638 |
Omnibus: | 0.464 | Durbin-Watson: | 1.904 |
Prob(Omnibus): | 0.793 | Jarque-Bera (JB): | 0.559 |
Skew: | 0.019 | Prob(JB): | 0.756 |
Kurtosis: | 2.238 | Cond. No. | 634. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:05:03 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.145 |
Model: | OLS | Adj. R-squared: | 0.104 |
Method: | Least Squares | F-statistic: | 3.554 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0733 |
Time: | 05:05:03 | Log-Likelihood: | -111.31 |
No. Observations: | 23 | AIC: | 226.6 |
Df Residuals: | 21 | BIC: | 228.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 780.4620 | 371.745 | 2.099 | 0.048 | 7.376 1553.548 |
expression | -66.2367 | 35.133 | -1.885 | 0.073 | -139.300 6.826 |
Omnibus: | 0.806 | Durbin-Watson: | 2.266 |
Prob(Omnibus): | 0.668 | Jarque-Bera (JB): | 0.778 |
Skew: | 0.218 | Prob(JB): | 0.678 |
Kurtosis: | 2.212 | Cond. No. | 595. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.885 | 0.365 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.488 |
Model: | OLS | Adj. R-squared: | 0.349 |
Method: | Least Squares | F-statistic: | 3.498 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0533 |
Time: | 05:05:03 | Log-Likelihood: | -70.276 |
No. Observations: | 15 | AIC: | 148.6 |
Df Residuals: | 11 | BIC: | 151.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 477.1341 | 570.036 | 0.837 | 0.420 | -777.507 1731.775 |
C(dose)[T.1] | 296.0268 | 1275.396 | 0.232 | 0.821 | -2511.102 3103.155 |
expression | -41.7017 | 58.009 | -0.719 | 0.487 | -169.379 85.975 |
expression:C(dose)[T.1] | -23.3641 | 127.078 | -0.184 | 0.857 | -303.061 256.333 |
Omnibus: | 1.303 | Durbin-Watson: | 1.246 |
Prob(Omnibus): | 0.521 | Jarque-Bera (JB): | 0.758 |
Skew: | -0.537 | Prob(JB): | 0.685 |
Kurtosis: | 2.757 | Cond. No. | 1.94e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.487 |
Model: | OLS | Adj. R-squared: | 0.401 |
Method: | Least Squares | F-statistic: | 5.688 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0183 |
Time: | 05:05:03 | Log-Likelihood: | -70.299 |
No. Observations: | 15 | AIC: | 146.6 |
Df Residuals: | 12 | BIC: | 148.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 524.9659 | 486.359 | 1.079 | 0.302 | -534.720 1584.652 |
C(dose)[T.1] | 61.5689 | 20.090 | 3.065 | 0.010 | 17.797 105.341 |
expression | -46.5703 | 49.491 | -0.941 | 0.365 | -154.402 61.261 |
Omnibus: | 1.514 | Durbin-Watson: | 1.208 |
Prob(Omnibus): | 0.469 | Jarque-Bera (JB): | 0.996 |
Skew: | -0.607 | Prob(JB): | 0.608 |
Kurtosis: | 2.653 | Cond. No. | 647. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:05:03 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.085 |
Model: | OLS | Adj. R-squared: | 0.014 |
Method: | Least Squares | F-statistic: | 1.205 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.292 |
Time: | 05:05:03 | Log-Likelihood: | -74.635 |
No. Observations: | 15 | AIC: | 153.3 |
Df Residuals: | 13 | BIC: | 154.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -431.5565 | 478.491 | -0.902 | 0.384 | -1465.273 602.160 |
expression | 52.6996 | 48.001 | 1.098 | 0.292 | -51.000 156.399 |
Omnibus: | 0.467 | Durbin-Watson: | 1.134 |
Prob(Omnibus): | 0.792 | Jarque-Bera (JB): | 0.528 |
Skew: | -0.326 | Prob(JB): | 0.768 |
Kurtosis: | 2.353 | Cond. No. | 496. |