AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.497 0.235 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.674
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 13.12
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.11e-05
Time: 04:58:59 Log-Likelihood: -100.20
No. Observations: 23 AIC: 208.4
Df Residuals: 19 BIC: 212.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 217.6951 197.257 1.104 0.284 -195.169 630.559
C(dose)[T.1] -12.2445 225.827 -0.054 0.957 -484.907 460.418
expression -17.3489 20.923 -0.829 0.417 -61.141 26.443
expression:C(dose)[T.1] 5.8711 24.563 0.239 0.814 -45.540 57.283
Omnibus: 0.413 Durbin-Watson: 2.127
Prob(Omnibus): 0.813 Jarque-Bera (JB): 0.534
Skew: -0.041 Prob(JB): 0.766
Kurtosis: 2.258 Cond. No. 679.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.673
Model: OLS Adj. R-squared: 0.641
Method: Least Squares F-statistic: 20.63
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.38e-05
Time: 04:58:59 Log-Likelihood: -100.23
No. Observations: 23 AIC: 206.5
Df Residuals: 20 BIC: 209.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 177.5527 100.996 1.758 0.094 -33.122 388.227
C(dose)[T.1] 41.6424 12.765 3.262 0.004 15.015 68.270
expression -13.0890 10.700 -1.223 0.235 -35.408 9.230
Omnibus: 0.332 Durbin-Watson: 2.108
Prob(Omnibus): 0.847 Jarque-Bera (JB): 0.489
Skew: 0.004 Prob(JB): 0.783
Kurtosis: 2.286 Cond. No. 219.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:58:59 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.500
Model: OLS Adj. R-squared: 0.476
Method: Least Squares F-statistic: 20.98
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000162
Time: 04:58:59 Log-Likelihood: -105.14
No. Observations: 23 AIC: 214.3
Df Residuals: 21 BIC: 216.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 432.6283 77.219 5.603 0.000 272.042 593.214
expression -39.2291 8.565 -4.580 0.000 -57.041 -21.418
Omnibus: 1.027 Durbin-Watson: 2.536
Prob(Omnibus): 0.598 Jarque-Bera (JB): 0.852
Skew: 0.190 Prob(JB): 0.653
Kurtosis: 2.137 Cond. No. 138.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.000 0.985 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.477
Model: OLS Adj. R-squared: 0.335
Method: Least Squares F-statistic: 3.347
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0594
Time: 04:58:59 Log-Likelihood: -70.436
No. Observations: 15 AIC: 148.9
Df Residuals: 11 BIC: 151.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 1.0155 121.779 0.008 0.993 -267.019 269.050
C(dose)[T.1] 179.9975 169.914 1.059 0.312 -193.980 553.975
expression 7.7238 14.097 0.548 0.595 -23.304 38.752
expression:C(dose)[T.1] -15.0273 19.438 -0.773 0.456 -57.811 27.756
Omnibus: 1.072 Durbin-Watson: 0.817
Prob(Omnibus): 0.585 Jarque-Bera (JB): 0.894
Skew: -0.516 Prob(JB): 0.639
Kurtosis: 2.396 Cond. No. 254.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.885
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0280
Time: 04:58:59 Log-Likelihood: -70.833
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 68.9774 82.848 0.833 0.421 -111.532 249.487
C(dose)[T.1] 49.2356 15.876 3.101 0.009 14.646 83.826
expression -0.1801 9.542 -0.019 0.985 -20.970 20.610
Omnibus: 2.712 Durbin-Watson: 0.815
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.869
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.617 Cond. No. 93.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:58:59 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.007
Model: OLS Adj. R-squared: -0.069
Method: Least Squares F-statistic: 0.09143
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.767
Time: 04:58:59 Log-Likelihood: -75.248
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 61.5215 106.791 0.576 0.574 -169.187 292.230
expression 3.6887 12.199 0.302 0.767 -22.666 30.043
Omnibus: 1.263 Durbin-Watson: 1.567
Prob(Omnibus): 0.532 Jarque-Bera (JB): 0.792
Skew: 0.100 Prob(JB): 0.673
Kurtosis: 1.892 Cond. No. 93.5