AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.159 0.694 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.655
Model: OLS Adj. R-squared: 0.600
Method: Least Squares F-statistic: 12.00
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.000123
Time: 21:13:55 Log-Likelihood: -100.88
No. Observations: 23 AIC: 209.8
Df Residuals: 19 BIC: 214.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 74.3506 117.776 0.631 0.535 -172.157 320.859
C(dose)[T.1] 165.7786 279.061 0.594 0.559 -418.304 749.861
expression -2.4997 14.596 -0.171 0.866 -33.050 28.050
expression:C(dose)[T.1] -12.5014 32.123 -0.389 0.701 -79.735 54.732
Omnibus: 1.307 Durbin-Watson: 1.846
Prob(Omnibus): 0.520 Jarque-Bera (JB): 0.886
Skew: 0.068 Prob(JB): 0.642
Kurtosis: 2.048 Cond. No. 631.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 18.72
Date: Mon, 27 Jan 2025 Prob (F-statistic): 2.62e-05
Time: 21:13:55 Log-Likelihood: -100.97
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 95.1491 102.702 0.926 0.365 -119.084 309.382
C(dose)[T.1] 57.3023 13.225 4.333 0.000 29.716 84.889
expression -5.0808 12.724 -0.399 0.694 -31.622 21.460
Omnibus: 0.953 Durbin-Watson: 1.879
Prob(Omnibus): 0.621 Jarque-Bera (JB): 0.761
Skew: 0.024 Prob(JB): 0.684
Kurtosis: 2.110 Cond. No. 203.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Mon, 27 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 21:13:55 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.325
Model: OLS Adj. R-squared: 0.293
Method: Least Squares F-statistic: 10.11
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00451
Time: 21:13:55 Log-Likelihood: -108.58
No. Observations: 23 AIC: 221.2
Df Residuals: 21 BIC: 223.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -226.4322 96.461 -2.347 0.029 -427.033 -25.831
expression 36.3120 11.419 3.180 0.005 12.564 60.060
Omnibus: 1.295 Durbin-Watson: 2.292
Prob(Omnibus): 0.523 Jarque-Bera (JB): 1.079
Skew: 0.328 Prob(JB): 0.583
Kurtosis: 2.166 Cond. No. 139.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.285 0.279 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.527
Model: OLS Adj. R-squared: 0.398
Method: Least Squares F-statistic: 4.082
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0356
Time: 21:13:55 Log-Likelihood: -69.688
No. Observations: 15 AIC: 147.4
Df Residuals: 11 BIC: 150.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 228.5457 120.571 1.896 0.085 -36.830 493.922
C(dose)[T.1] -94.9758 193.046 -0.492 0.632 -519.868 329.916
expression -26.4928 19.741 -1.342 0.207 -69.943 16.957
expression:C(dose)[T.1] 23.7507 31.339 0.758 0.464 -45.225 92.727
Omnibus: 2.346 Durbin-Watson: 1.087
Prob(Omnibus): 0.309 Jarque-Bera (JB): 1.358
Skew: -0.734 Prob(JB): 0.507
Kurtosis: 2.861 Cond. No. 204.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.502
Model: OLS Adj. R-squared: 0.419
Method: Least Squares F-statistic: 6.050
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0152
Time: 21:13:55 Log-Likelihood: -70.070
No. Observations: 15 AIC: 146.1
Df Residuals: 12 BIC: 148.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 171.2293 92.223 1.857 0.088 -29.708 372.166
C(dose)[T.1] 50.8683 15.032 3.384 0.005 18.117 83.620
expression -17.0682 15.058 -1.134 0.279 -49.876 15.740
Omnibus: 2.410 Durbin-Watson: 0.899
Prob(Omnibus): 0.300 Jarque-Bera (JB): 1.782
Skew: -0.798 Prob(JB): 0.410
Kurtosis: 2.448 Cond. No. 78.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00629
Time: 21:13:55 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.027
Model: OLS Adj. R-squared: -0.048
Method: Least Squares F-statistic: 0.3595
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.559
Time: 21:13:55 Log-Likelihood: -75.095
No. Observations: 15 AIC: 154.2
Df Residuals: 13 BIC: 155.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 167.6902 123.860 1.354 0.199 -99.892 435.273
expression -12.0682 20.127 -0.600 0.559 -55.549 31.413
Omnibus: 2.477 Durbin-Watson: 1.751
Prob(Omnibus): 0.290 Jarque-Bera (JB): 1.135
Skew: 0.240 Prob(JB): 0.567
Kurtosis: 1.741 Cond. No. 78.0