AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.111 0.743 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.596
Method: Least Squares F-statistic: 11.82
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.000135
Time: 23:05:37 Log-Likelihood: -100.99
No. Observations: 23 AIC: 210.0
Df Residuals: 19 BIC: 214.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 97.0624 178.456 0.544 0.593 -276.449 470.574
C(dose)[T.1] 91.9266 388.932 0.236 0.816 -722.117 905.970
expression -4.3217 17.986 -0.240 0.813 -41.966 33.323
expression:C(dose)[T.1] -3.3879 37.326 -0.091 0.929 -81.512 74.736
Omnibus: 1.005 Durbin-Watson: 1.899
Prob(Omnibus): 0.605 Jarque-Bera (JB): 0.784
Skew: 0.056 Prob(JB): 0.676
Kurtosis: 2.102 Cond. No. 1.06e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.65
Date: Mon, 27 Jan 2025 Prob (F-statistic): 2.68e-05
Time: 23:05:37 Log-Likelihood: -101.00
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 104.8626 152.473 0.688 0.500 -213.191 422.916
C(dose)[T.1] 56.6469 13.251 4.275 0.000 29.006 84.288
expression -5.1083 15.364 -0.332 0.743 -37.158 26.941
Omnibus: 0.885 Durbin-Watson: 1.910
Prob(Omnibus): 0.642 Jarque-Bera (JB): 0.739
Skew: 0.045 Prob(JB): 0.691
Kurtosis: 2.126 Cond. No. 362.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Mon, 27 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 23:05:37 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.332
Model: OLS Adj. R-squared: 0.300
Method: Least Squares F-statistic: 10.44
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00400
Time: 23:05:37 Log-Likelihood: -108.46
No. Observations: 23 AIC: 220.9
Df Residuals: 21 BIC: 223.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -372.6310 140.119 -2.659 0.015 -664.025 -81.237
expression 44.2354 13.690 3.231 0.004 15.765 72.706
Omnibus: 0.833 Durbin-Watson: 2.115
Prob(Omnibus): 0.659 Jarque-Bera (JB): 0.774
Skew: 0.189 Prob(JB): 0.679
Kurtosis: 2.185 Cond. No. 245.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.512 0.242 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.545
Model: OLS Adj. R-squared: 0.420
Method: Least Squares F-statistic: 4.384
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0292
Time: 23:05:37 Log-Likelihood: -69.401
No. Observations: 15 AIC: 146.8
Df Residuals: 11 BIC: 149.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 277.9146 140.574 1.977 0.074 -31.486 587.315
C(dose)[T.1] -128.8681 195.010 -0.661 0.522 -558.082 300.345
expression -26.2458 17.475 -1.502 0.161 -64.709 12.217
expression:C(dose)[T.1] 22.1476 24.405 0.908 0.384 -31.567 75.862
Omnibus: 2.849 Durbin-Watson: 1.177
Prob(Omnibus): 0.241 Jarque-Bera (JB): 1.685
Skew: -0.819 Prob(JB): 0.431
Kurtosis: 2.890 Cond. No. 284.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.510
Model: OLS Adj. R-squared: 0.429
Method: Least Squares F-statistic: 6.256
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0138
Time: 23:05:37 Log-Likelihood: -69.943
No. Observations: 15 AIC: 145.9
Df Residuals: 12 BIC: 148.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 186.8416 97.710 1.912 0.080 -26.050 399.734
C(dose)[T.1] 47.5799 14.891 3.195 0.008 15.135 80.024
expression -14.8898 12.108 -1.230 0.242 -41.272 11.492
Omnibus: 2.897 Durbin-Watson: 0.885
Prob(Omnibus): 0.235 Jarque-Bera (JB): 2.081
Skew: -0.881 Prob(JB): 0.353
Kurtosis: 2.529 Cond. No. 107.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00629
Time: 23:05:37 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.094
Model: OLS Adj. R-squared: 0.024
Method: Least Squares F-statistic: 1.348
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.266
Time: 23:05:37 Log-Likelihood: -74.560
No. Observations: 15 AIC: 153.1
Df Residuals: 13 BIC: 154.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 239.4112 125.890 1.902 0.080 -32.558 511.380
expression -18.3052 15.765 -1.161 0.266 -52.363 15.753
Omnibus: 4.032 Durbin-Watson: 1.823
Prob(Omnibus): 0.133 Jarque-Bera (JB): 1.508
Skew: 0.349 Prob(JB): 0.471
Kurtosis: 1.613 Cond. No. 106.