AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.001 | 0.981 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.664 |
Model: | OLS | Adj. R-squared: | 0.611 |
Method: | Least Squares | F-statistic: | 12.54 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.44e-05 |
Time: | 03:41:20 | Log-Likelihood: | -100.55 |
No. Observations: | 23 | AIC: | 209.1 |
Df Residuals: | 19 | BIC: | 213.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -152.4117 | 308.506 | -0.494 | 0.627 | -798.123 493.299 |
C(dose)[T.1] | 462.8908 | 440.298 | 1.051 | 0.306 | -458.664 1384.445 |
expression | 23.0563 | 34.419 | 0.670 | 0.511 | -48.983 95.096 |
expression:C(dose)[T.1] | -45.6468 | 49.062 | -0.930 | 0.364 | -148.335 57.041 |
Omnibus: | 1.127 | Durbin-Watson: | 1.626 |
Prob(Omnibus): | 0.569 | Jarque-Bera (JB): | 0.838 |
Skew: | 0.098 | Prob(JB): | 0.658 |
Kurtosis: | 2.085 | Cond. No. | 1.18e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 03:41:20 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 48.9120 | 219.153 | 0.223 | 0.826 | -408.234 506.057 |
C(dose)[T.1] | 53.3244 | 8.786 | 6.070 | 0.000 | 34.998 71.651 |
expression | 0.5910 | 24.445 | 0.024 | 0.981 | -50.401 51.583 |
Omnibus: | 0.320 | Durbin-Watson: | 1.885 |
Prob(Omnibus): | 0.852 | Jarque-Bera (JB): | 0.484 |
Skew: | 0.057 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 455. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:41:20 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.003 |
Model: | OLS | Adj. R-squared: | -0.045 |
Method: | Least Squares | F-statistic: | 0.05605 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.815 |
Time: | 03:41:20 | Log-Likelihood: | -113.07 |
No. Observations: | 23 | AIC: | 230.1 |
Df Residuals: | 21 | BIC: | 232.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -5.5546 | 360.245 | -0.015 | 0.988 | -754.724 743.615 |
expression | 9.5044 | 40.145 | 0.237 | 0.815 | -73.981 92.990 |
Omnibus: | 3.457 | Durbin-Watson: | 2.485 |
Prob(Omnibus): | 0.178 | Jarque-Bera (JB): | 1.634 |
Skew: | 0.310 | Prob(JB): | 0.442 |
Kurtosis: | 1.851 | Cond. No. | 454. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.731 | 0.077 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.587 |
Model: | OLS | Adj. R-squared: | 0.474 |
Method: | Least Squares | F-statistic: | 5.204 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0176 |
Time: | 03:41:20 | Log-Likelihood: | -68.674 |
No. Observations: | 15 | AIC: | 145.3 |
Df Residuals: | 11 | BIC: | 148.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -98.0403 | 553.793 | -0.177 | 0.863 | -1316.931 1120.851 |
C(dose)[T.1] | -243.6371 | 604.531 | -0.403 | 0.695 | -1574.200 1086.926 |
expression | 17.4920 | 58.532 | 0.299 | 0.771 | -111.337 146.321 |
expression:C(dose)[T.1] | 27.5100 | 63.180 | 0.435 | 0.672 | -111.549 166.569 |
Omnibus: | 1.251 | Durbin-Watson: | 0.774 |
Prob(Omnibus): | 0.535 | Jarque-Bera (JB): | 0.995 |
Skew: | -0.562 | Prob(JB): | 0.608 |
Kurtosis: | 2.426 | Cond. No. | 1.33e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.580 |
Model: | OLS | Adj. R-squared: | 0.509 |
Method: | Least Squares | F-statistic: | 8.269 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00553 |
Time: | 03:41:20 | Log-Likelihood: | -68.802 |
No. Observations: | 15 | AIC: | 143.6 |
Df Residuals: | 12 | BIC: | 145.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -321.3933 | 201.537 | -1.595 | 0.137 | -760.504 117.717 |
C(dose)[T.1] | 19.4227 | 20.653 | 0.940 | 0.366 | -25.576 64.422 |
expression | 41.1031 | 21.278 | 1.932 | 0.077 | -5.258 87.465 |
Omnibus: | 1.172 | Durbin-Watson: | 0.814 |
Prob(Omnibus): | 0.556 | Jarque-Bera (JB): | 1.006 |
Skew: | -0.501 | Prob(JB): | 0.605 |
Kurtosis: | 2.222 | Cond. No. | 294. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:41:20 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.549 |
Model: | OLS | Adj. R-squared: | 0.514 |
Method: | Least Squares | F-statistic: | 15.79 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00159 |
Time: | 03:41:20 | Log-Likelihood: | -69.336 |
No. Observations: | 15 | AIC: | 142.7 |
Df Residuals: | 13 | BIC: | 144.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -458.0755 | 138.996 | -3.296 | 0.006 | -758.358 -157.793 |
expression | 56.0372 | 14.100 | 3.974 | 0.002 | 25.576 86.498 |
Omnibus: | 0.618 | Durbin-Watson: | 0.866 |
Prob(Omnibus): | 0.734 | Jarque-Bera (JB): | 0.504 |
Skew: | -0.387 | Prob(JB): | 0.777 |
Kurtosis: | 2.545 | Cond. No. | 203. |