AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.022 | 0.884 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.675 |
Model: | OLS | Adj. R-squared: | 0.624 |
Method: | Least Squares | F-statistic: | 13.17 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 6.94e-05 |
Time: | 22:51:22 | Log-Likelihood: | -100.17 |
No. Observations: | 23 | AIC: | 208.3 |
Df Residuals: | 19 | BIC: | 212.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 122.1742 | 73.876 | 1.654 | 0.115 | -32.450 276.798 |
C(dose)[T.1] | -55.1419 | 88.866 | -0.621 | 0.542 | -241.140 130.857 |
expression | -11.7464 | 12.726 | -0.923 | 0.368 | -38.382 14.889 |
expression:C(dose)[T.1] | 19.0917 | 15.519 | 1.230 | 0.234 | -13.391 51.574 |
Omnibus: | 0.206 | Durbin-Watson: | 1.973 |
Prob(Omnibus): | 0.902 | Jarque-Bera (JB): | 0.260 |
Skew: | -0.190 | Prob(JB): | 0.878 |
Kurtosis: | 2.644 | Cond. No. | 169. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.53 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.80e-05 |
Time: | 22:51:22 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 47.8980 | 43.112 | 1.111 | 0.280 | -42.031 137.827 |
C(dose)[T.1] | 53.6322 | 8.989 | 5.966 | 0.000 | 34.880 72.384 |
expression | 1.0906 | 7.377 | 0.148 | 0.884 | -14.297 16.478 |
Omnibus: | 0.259 | Durbin-Watson: | 1.869 |
Prob(Omnibus): | 0.878 | Jarque-Bera (JB): | 0.446 |
Skew: | 0.043 | Prob(JB): | 0.800 |
Kurtosis: | 2.323 | Cond. No. | 58.0 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:51:23 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.026 |
Model: | OLS | Adj. R-squared: | -0.021 |
Method: | Least Squares | F-statistic: | 0.5504 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.466 |
Time: | 22:51:23 | Log-Likelihood: | -112.81 |
No. Observations: | 23 | AIC: | 229.6 |
Df Residuals: | 21 | BIC: | 231.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 128.8302 | 66.582 | 1.935 | 0.067 | -9.635 267.296 |
expression | -8.6822 | 11.703 | -0.742 | 0.466 | -33.020 15.655 |
Omnibus: | 1.837 | Durbin-Watson: | 2.557 |
Prob(Omnibus): | 0.399 | Jarque-Bera (JB): | 1.490 |
Skew: | 0.468 | Prob(JB): | 0.475 |
Kurtosis: | 2.177 | Cond. No. | 54.8 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.048 | 0.830 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.457 |
Model: | OLS | Adj. R-squared: | 0.309 |
Method: | Least Squares | F-statistic: | 3.091 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0718 |
Time: | 22:51:23 | Log-Likelihood: | -70.715 |
No. Observations: | 15 | AIC: | 149.4 |
Df Residuals: | 11 | BIC: | 152.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 122.5414 | 236.974 | 0.517 | 0.615 | -399.034 644.117 |
C(dose)[T.1] | -42.5987 | 259.775 | -0.164 | 0.873 | -614.359 529.162 |
expression | -7.6512 | 32.857 | -0.233 | 0.820 | -79.969 64.666 |
expression:C(dose)[T.1] | 13.1510 | 36.488 | 0.360 | 0.725 | -67.159 93.461 |
Omnibus: | 2.996 | Durbin-Watson: | 0.858 |
Prob(Omnibus): | 0.224 | Jarque-Bera (JB): | 1.825 |
Skew: | -0.852 | Prob(JB): | 0.402 |
Kurtosis: | 2.861 | Cond. No. | 342. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.451 |
Model: | OLS | Adj. R-squared: | 0.359 |
Method: | Least Squares | F-statistic: | 4.928 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0274 |
Time: | 22:51:23 | Log-Likelihood: | -70.803 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 45.7295 | 99.790 | 0.458 | 0.655 | -171.694 263.153 |
C(dose)[T.1] | 50.8033 | 17.339 | 2.930 | 0.013 | 13.025 88.582 |
expression | 3.0124 | 13.762 | 0.219 | 0.830 | -26.972 32.997 |
Omnibus: | 2.985 | Durbin-Watson: | 0.882 |
Prob(Omnibus): | 0.225 | Jarque-Bera (JB): | 1.935 |
Skew: | -0.871 | Prob(JB): | 0.380 |
Kurtosis: | 2.753 | Cond. No. | 90.8 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:51:23 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.058 |
Model: | OLS | Adj. R-squared: | -0.014 |
Method: | Least Squares | F-statistic: | 0.8030 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.386 |
Time: | 22:51:23 | Log-Likelihood: | -74.851 |
No. Observations: | 15 | AIC: | 153.7 |
Df Residuals: | 13 | BIC: | 155.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 190.9358 | 108.991 | 1.752 | 0.103 | -44.525 426.397 |
expression | -14.0589 | 15.689 | -0.896 | 0.386 | -47.952 19.834 |
Omnibus: | 0.953 | Durbin-Watson: | 1.255 |
Prob(Omnibus): | 0.621 | Jarque-Bera (JB): | 0.734 |
Skew: | 0.182 | Prob(JB): | 0.693 |
Kurtosis: | 1.979 | Cond. No. | 78.4 |