AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.034 | 0.856 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.653 |
Model: | OLS | Adj. R-squared: | 0.599 |
Method: | Least Squares | F-statistic: | 11.94 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000127 |
Time: | 04:06:45 | Log-Likelihood: | -100.92 |
No. Observations: | 23 | AIC: | 209.8 |
Df Residuals: | 19 | BIC: | 214.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 80.1019 | 61.135 | 1.310 | 0.206 | -47.855 208.059 |
C(dose)[T.1] | 8.6284 | 98.948 | 0.087 | 0.931 | -198.472 215.729 |
expression | -5.0387 | 11.835 | -0.426 | 0.675 | -29.810 19.733 |
expression:C(dose)[T.1] | 8.6260 | 18.937 | 0.456 | 0.654 | -31.009 48.261 |
Omnibus: | 0.168 | Durbin-Watson: | 1.832 |
Prob(Omnibus): | 0.920 | Jarque-Bera (JB): | 0.380 |
Skew: | 0.060 | Prob(JB): | 0.827 |
Kurtosis: | 2.382 | Cond. No. | 148. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.54 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.79e-05 |
Time: | 04:06:46 | Log-Likelihood: | -101.04 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 62.7864 | 46.922 | 1.338 | 0.196 | -35.091 160.664 |
C(dose)[T.1] | 53.5140 | 8.815 | 6.071 | 0.000 | 35.127 71.901 |
expression | -1.6692 | 9.054 | -0.184 | 0.856 | -20.556 17.217 |
Omnibus: | 0.297 | Durbin-Watson: | 1.881 |
Prob(Omnibus): | 0.862 | Jarque-Bera (JB): | 0.471 |
Skew: | 0.082 | Prob(JB): | 0.790 |
Kurtosis: | 2.318 | Cond. No. | 58.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:06:46 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.004 |
Model: | OLS | Adj. R-squared: | -0.043 |
Method: | Least Squares | F-statistic: | 0.08478 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.774 |
Time: | 04:06:46 | Log-Likelihood: | -113.06 |
No. Observations: | 23 | AIC: | 230.1 |
Df Residuals: | 21 | BIC: | 232.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 57.3388 | 77.193 | 0.743 | 0.466 | -103.192 217.870 |
expression | 4.3122 | 14.810 | 0.291 | 0.774 | -26.486 35.110 |
Omnibus: | 3.269 | Durbin-Watson: | 2.509 |
Prob(Omnibus): | 0.195 | Jarque-Bera (JB): | 1.510 |
Skew: | 0.254 | Prob(JB): | 0.470 |
Kurtosis: | 1.852 | Cond. No. | 57.9 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.100 | 0.757 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.454 |
Model: | OLS | Adj. R-squared: | 0.305 |
Method: | Least Squares | F-statistic: | 3.046 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0742 |
Time: | 04:06:46 | Log-Likelihood: | -70.764 |
No. Observations: | 15 | AIC: | 149.5 |
Df Residuals: | 11 | BIC: | 152.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 46.7199 | 202.988 | 0.230 | 0.822 | -400.054 493.494 |
C(dose)[T.1] | 28.6747 | 245.073 | 0.117 | 0.909 | -510.727 568.077 |
expression | 3.4181 | 33.447 | 0.102 | 0.920 | -70.197 77.034 |
expression:C(dose)[T.1] | 3.9872 | 41.508 | 0.096 | 0.925 | -87.372 95.347 |
Omnibus: | 2.430 | Durbin-Watson: | 0.794 |
Prob(Omnibus): | 0.297 | Jarque-Bera (JB): | 1.739 |
Skew: | -0.800 | Prob(JB): | 0.419 |
Kurtosis: | 2.530 | Cond. No. | 255. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.453 |
Model: | OLS | Adj. R-squared: | 0.362 |
Method: | Least Squares | F-statistic: | 4.976 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0267 |
Time: | 04:06:46 | Log-Likelihood: | -70.771 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 31.0355 | 115.512 | 0.269 | 0.793 | -220.644 282.715 |
C(dose)[T.1] | 52.1450 | 18.232 | 2.860 | 0.014 | 12.421 91.869 |
expression | 6.0069 | 18.972 | 0.317 | 0.757 | -35.330 47.344 |
Omnibus: | 2.524 | Durbin-Watson: | 0.837 |
Prob(Omnibus): | 0.283 | Jarque-Bera (JB): | 1.785 |
Skew: | -0.815 | Prob(JB): | 0.410 |
Kurtosis: | 2.557 | Cond. No. | 89.0 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:06:46 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.081 |
Model: | OLS | Adj. R-squared: | 0.010 |
Method: | Least Squares | F-statistic: | 1.141 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.305 |
Time: | 04:06:46 | Log-Likelihood: | -74.669 |
No. Observations: | 15 | AIC: | 153.3 |
Df Residuals: | 13 | BIC: | 154.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 219.5083 | 118.201 | 1.857 | 0.086 | -35.850 474.866 |
expression | -21.7091 | 20.322 | -1.068 | 0.305 | -65.611 22.193 |
Omnibus: | 0.358 | Durbin-Watson: | 1.333 |
Prob(Omnibus): | 0.836 | Jarque-Bera (JB): | 0.479 |
Skew: | 0.040 | Prob(JB): | 0.787 |
Kurtosis: | 2.128 | Cond. No. | 72.6 |