AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.067 | 0.798 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.662 |
Model: | OLS | Adj. R-squared: | 0.608 |
Method: | Least Squares | F-statistic: | 12.39 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000101 |
Time: | 05:22:23 | Log-Likelihood: | -100.64 |
No. Observations: | 23 | AIC: | 209.3 |
Df Residuals: | 19 | BIC: | 213.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -28.3061 | 130.482 | -0.217 | 0.831 | -301.408 244.796 |
C(dose)[T.1] | 253.7739 | 247.305 | 1.026 | 0.318 | -263.841 771.389 |
expression | 10.1913 | 16.098 | 0.633 | 0.534 | -23.503 43.885 |
expression:C(dose)[T.1] | -25.3979 | 31.502 | -0.806 | 0.430 | -91.333 40.537 |
Omnibus: | 0.181 | Durbin-Watson: | 1.911 |
Prob(Omnibus): | 0.913 | Jarque-Bera (JB): | 0.338 |
Skew: | -0.170 | Prob(JB): | 0.845 |
Kurtosis: | 2.513 | Cond. No. | 531. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.59 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.74e-05 |
Time: | 05:22:23 | Log-Likelihood: | -101.02 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 25.3934 | 111.216 | 0.228 | 0.822 | -206.599 257.386 |
C(dose)[T.1] | 54.5535 | 9.931 | 5.493 | 0.000 | 33.837 75.270 |
expression | 3.5589 | 13.716 | 0.259 | 0.798 | -25.052 32.170 |
Omnibus: | 0.676 | Durbin-Watson: | 1.914 |
Prob(Omnibus): | 0.713 | Jarque-Bera (JB): | 0.664 |
Skew: | 0.083 | Prob(JB): | 0.717 |
Kurtosis: | 2.184 | Cond. No. | 206. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:22:23 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.123 |
Model: | OLS | Adj. R-squared: | 0.081 |
Method: | Least Squares | F-statistic: | 2.932 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.102 |
Time: | 05:22:23 | Log-Likelihood: | -111.60 |
No. Observations: | 23 | AIC: | 227.2 |
Df Residuals: | 21 | BIC: | 229.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 333.6239 | 148.425 | 2.248 | 0.035 | 24.957 642.291 |
expression | -32.0062 | 18.690 | -1.712 | 0.102 | -70.875 6.862 |
Omnibus: | 2.130 | Durbin-Watson: | 2.072 |
Prob(Omnibus): | 0.345 | Jarque-Bera (JB): | 1.107 |
Skew: | -0.069 | Prob(JB): | 0.575 |
Kurtosis: | 1.934 | Cond. No. | 177. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.711 | 0.078 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.585 |
Model: | OLS | Adj. R-squared: | 0.472 |
Method: | Least Squares | F-statistic: | 5.168 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0180 |
Time: | 05:22:23 | Log-Likelihood: | -68.705 |
No. Observations: | 15 | AIC: | 145.4 |
Df Residuals: | 11 | BIC: | 148.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 297.3396 | 325.588 | 0.913 | 0.381 | -419.275 1013.955 |
C(dose)[T.1] | 213.2240 | 394.959 | 0.540 | 0.600 | -656.075 1082.523 |
expression | -30.8568 | 43.676 | -0.707 | 0.495 | -126.986 65.272 |
expression:C(dose)[T.1] | -20.9891 | 52.647 | -0.399 | 0.698 | -136.864 94.886 |
Omnibus: | 0.539 | Durbin-Watson: | 0.740 |
Prob(Omnibus): | 0.764 | Jarque-Bera (JB): | 0.534 |
Skew: | -0.363 | Prob(JB): | 0.766 |
Kurtosis: | 2.430 | Cond. No. | 616. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.579 |
Model: | OLS | Adj. R-squared: | 0.509 |
Method: | Least Squares | F-statistic: | 8.251 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00557 |
Time: | 05:22:23 | Log-Likelihood: | -68.812 |
No. Observations: | 15 | AIC: | 143.6 |
Df Residuals: | 12 | BIC: | 145.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 404.9696 | 175.509 | 2.307 | 0.040 | 22.568 787.371 |
C(dose)[T.1] | 55.8722 | 14.186 | 3.939 | 0.002 | 24.964 86.780 |
expression | -45.3021 | 23.517 | -1.926 | 0.078 | -96.541 5.937 |
Omnibus: | 0.499 | Durbin-Watson: | 0.826 |
Prob(Omnibus): | 0.779 | Jarque-Bera (JB): | 0.579 |
Skew: | -0.277 | Prob(JB): | 0.749 |
Kurtosis: | 2.213 | Cond. No. | 197. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:22:23 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.035 |
Model: | OLS | Adj. R-squared: | -0.040 |
Method: | Least Squares | F-statistic: | 0.4671 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.506 |
Time: | 05:22:23 | Log-Likelihood: | -75.035 |
No. Observations: | 15 | AIC: | 154.1 |
Df Residuals: | 13 | BIC: | 155.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 264.3920 | 249.992 | 1.058 | 0.309 | -275.683 804.467 |
expression | -22.6742 | 33.175 | -0.683 | 0.506 | -94.345 48.997 |
Omnibus: | 1.023 | Durbin-Watson: | 1.653 |
Prob(Omnibus): | 0.600 | Jarque-Bera (JB): | 0.731 |
Skew: | 0.117 | Prob(JB): | 0.694 |
Kurtosis: | 1.944 | Cond. No. | 192. |