AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.919 | 0.181 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.680 |
Model: | OLS | Adj. R-squared: | 0.629 |
Method: | Least Squares | F-statistic: | 13.45 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.10e-05 |
Time: | 05:13:17 | Log-Likelihood: | -100.01 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 19 | BIC: | 212.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 348.5411 | 321.389 | 1.084 | 0.292 | -324.133 1021.215 |
C(dose)[T.1] | 65.2570 | 445.658 | 0.146 | 0.885 | -867.516 998.030 |
expression | -30.9889 | 33.832 | -0.916 | 0.371 | -101.799 39.822 |
expression:C(dose)[T.1] | -0.7354 | 46.551 | -0.016 | 0.988 | -98.168 96.697 |
Omnibus: | 0.284 | Durbin-Watson: | 1.857 |
Prob(Omnibus): | 0.868 | Jarque-Bera (JB): | 0.463 |
Skew: | -0.087 | Prob(JB): | 0.793 |
Kurtosis: | 2.327 | Cond. No. | 1.32e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.680 |
Model: | OLS | Adj. R-squared: | 0.648 |
Method: | Least Squares | F-statistic: | 21.23 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.13e-05 |
Time: | 05:13:17 | Log-Likelihood: | -100.01 |
No. Observations: | 23 | AIC: | 206.0 |
Df Residuals: | 20 | BIC: | 209.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 352.2302 | 215.211 | 1.637 | 0.117 | -96.692 801.152 |
C(dose)[T.1] | 58.2185 | 9.088 | 6.406 | 0.000 | 39.261 77.176 |
expression | -31.3773 | 22.650 | -1.385 | 0.181 | -78.625 15.870 |
Omnibus: | 0.291 | Durbin-Watson: | 1.860 |
Prob(Omnibus): | 0.865 | Jarque-Bera (JB): | 0.467 |
Skew: | -0.087 | Prob(JB): | 0.792 |
Kurtosis: | 2.323 | Cond. No. | 499. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:13:17 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.023 |
Model: | OLS | Adj. R-squared: | -0.024 |
Method: | Least Squares | F-statistic: | 0.4886 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.492 |
Time: | 05:13:17 | Log-Likelihood: | -112.84 |
No. Observations: | 23 | AIC: | 229.7 |
Df Residuals: | 21 | BIC: | 232.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -158.4589 | 340.802 | -0.465 | 0.647 | -867.196 550.279 |
expression | 24.8815 | 35.595 | 0.699 | 0.492 | -49.142 98.905 |
Omnibus: | 1.544 | Durbin-Watson: | 2.465 |
Prob(Omnibus): | 0.462 | Jarque-Bera (JB): | 1.179 |
Skew: | 0.333 | Prob(JB): | 0.555 |
Kurtosis: | 2.113 | Cond. No. | 462. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.801 | 0.388 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.484 |
Model: | OLS | Adj. R-squared: | 0.343 |
Method: | Least Squares | F-statistic: | 3.433 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0558 |
Time: | 05:13:17 | Log-Likelihood: | -70.345 |
No. Observations: | 15 | AIC: | 148.7 |
Df Residuals: | 11 | BIC: | 151.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 498.7019 | 644.721 | 0.774 | 0.456 | -920.320 1917.724 |
C(dose)[T.1] | -10.8870 | 941.851 | -0.012 | 0.991 | -2083.886 2062.112 |
expression | -47.2760 | 70.663 | -0.669 | 0.517 | -202.803 108.251 |
expression:C(dose)[T.1] | 7.5136 | 101.987 | 0.074 | 0.943 | -216.958 231.985 |
Omnibus: | 4.539 | Durbin-Watson: | 1.088 |
Prob(Omnibus): | 0.103 | Jarque-Bera (JB): | 2.373 |
Skew: | -0.953 | Prob(JB): | 0.305 |
Kurtosis: | 3.402 | Cond. No. | 1.46e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.483 |
Model: | OLS | Adj. R-squared: | 0.397 |
Method: | Least Squares | F-statistic: | 5.611 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0190 |
Time: | 05:13:17 | Log-Likelihood: | -70.348 |
No. Observations: | 15 | AIC: | 146.7 |
Df Residuals: | 12 | BIC: | 148.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 465.7978 | 445.276 | 1.046 | 0.316 | -504.376 1435.971 |
C(dose)[T.1] | 58.4868 | 18.439 | 3.172 | 0.008 | 18.311 98.662 |
expression | -43.6690 | 48.796 | -0.895 | 0.388 | -149.986 62.648 |
Omnibus: | 4.924 | Durbin-Watson: | 1.081 |
Prob(Omnibus): | 0.085 | Jarque-Bera (JB): | 2.561 |
Skew: | -0.980 | Prob(JB): | 0.278 |
Kurtosis: | 3.507 | Cond. No. | 549. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:13:17 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.050 |
Model: | OLS | Adj. R-squared: | -0.023 |
Method: | Least Squares | F-statistic: | 0.6846 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.423 |
Time: | 05:13:17 | Log-Likelihood: | -74.915 |
No. Observations: | 15 | AIC: | 153.8 |
Df Residuals: | 13 | BIC: | 155.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -307.7927 | 485.306 | -0.634 | 0.537 | -1356.233 740.648 |
expression | 43.4671 | 52.535 | 0.827 | 0.423 | -70.027 156.961 |
Omnibus: | 0.248 | Durbin-Watson: | 1.328 |
Prob(Omnibus): | 0.883 | Jarque-Bera (JB): | 0.425 |
Skew: | -0.087 | Prob(JB): | 0.809 |
Kurtosis: | 2.194 | Cond. No. | 458. |