AIM Score vs. Gene Expression 
		Full X range:
		
 
		 
			
		
		Auto X range:
		
 
		
		Group Comparisons: Boxplots
		 
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 1.919 | 0.181 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.680 | 
  | Model: | OLS | Adj. R-squared: | 0.629 | 
  | Method: | Least Squares | F-statistic: | 13.45 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 6.10e-05 | 
  | Time: | 22:24:20 | Log-Likelihood: | -100.01 | 
  | No. Observations: | 23 | AIC: | 208.0 | 
  | Df Residuals: | 19 | BIC: | 212.6 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 348.5411 | 321.389 | 1.084 | 0.292 | -324.133  1021.215 | 
  | C(dose)[T.1] | 65.2570 | 445.658 | 0.146 | 0.885 | -867.516   998.030 | 
  | expression | -30.9889 | 33.832 | -0.916 | 0.371 | -101.799    39.822 | 
  | expression:C(dose)[T.1] | -0.7354 | 46.551 | -0.016 | 0.988 | -98.168    96.697 | 
  | Omnibus: | 0.284 | Durbin-Watson: | 1.857 | 
  | Prob(Omnibus): | 0.868 | Jarque-Bera (JB): | 0.463 | 
  | Skew: | -0.087 | Prob(JB): | 0.793 | 
  | Kurtosis: | 2.327 | Cond. No. | 1.32e+03 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.680 | 
  | Model: | OLS | Adj. R-squared: | 0.648 | 
  | Method: | Least Squares | F-statistic: | 21.23 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 1.13e-05 | 
  | Time: | 22:24:20 | Log-Likelihood: | -100.01 | 
  | No. Observations: | 23 | AIC: | 206.0 | 
  | Df Residuals: | 20 | BIC: | 209.4 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 352.2302 | 215.211 | 1.637 | 0.117 | -96.692   801.152 | 
  | C(dose)[T.1] | 58.2185 | 9.088 | 6.406 | 0.000 | 39.261    77.176 | 
  | expression | -31.3773 | 22.650 | -1.385 | 0.181 | -78.625    15.870 | 
  | Omnibus: | 0.291 | Durbin-Watson: | 1.860 | 
  | Prob(Omnibus): | 0.865 | Jarque-Bera (JB): | 0.467 | 
  | Skew: | -0.087 | Prob(JB): | 0.792 | 
  | Kurtosis: | 2.323 | Cond. No. | 499. | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.649 | 
  | Model: | OLS | Adj. R-squared: | 0.632 | 
  | Method: | Least Squares | F-statistic: | 38.84 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 3.51e-06 | 
  | Time: | 22:24:20 | Log-Likelihood: | -101.06 | 
  | No. Observations: | 23 | AIC: | 206.1 | 
  | Df Residuals: | 21 | BIC: | 208.4 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900    66.517 | 
  | C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539    71.135 | 
  | Omnibus: | 0.322 | Durbin-Watson: | 1.888 | 
  | Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 | 
  | Skew: | 0.060 | Prob(JB): | 0.785 | 
  | Kurtosis: | 2.299 | Cond. No. | 2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.023 | 
  | Model: | OLS | Adj. R-squared: | -0.024 | 
  | Method: | Least Squares | F-statistic: | 0.4886 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 0.492 | 
  | Time: | 22:24:20 | Log-Likelihood: | -112.84 | 
  | No. Observations: | 23 | AIC: | 229.7 | 
  | Df Residuals: | 21 | BIC: | 232.0 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -158.4589 | 340.802 | -0.465 | 0.647 | -867.196   550.279 | 
  | expression | 24.8815 | 35.595 | 0.699 | 0.492 | -49.142    98.905 | 
  | Omnibus: | 1.544 | Durbin-Watson: | 2.465 | 
  | Prob(Omnibus): | 0.462 | Jarque-Bera (JB): | 1.179 | 
  | Skew: | 0.333 | Prob(JB): | 0.555 | 
  | Kurtosis: | 2.113 | Cond. No. | 462. | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 0.801 | 0.388 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.484 | 
  | Model: | OLS | Adj. R-squared: | 0.343 | 
  | Method: | Least Squares | F-statistic: | 3.433 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 0.0558 | 
  | Time: | 22:24:20 | Log-Likelihood: | -70.345 | 
  | No. Observations: | 15 | AIC: | 148.7 | 
  | Df Residuals: | 11 | BIC: | 151.5 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 498.7019 | 644.721 | 0.774 | 0.456 | -920.320  1917.724 | 
  | C(dose)[T.1] | -10.8870 | 941.851 | -0.012 | 0.991 | -2083.886  2062.112 | 
  | expression | -47.2760 | 70.663 | -0.669 | 0.517 | -202.803   108.251 | 
  | expression:C(dose)[T.1] | 7.5136 | 101.987 | 0.074 | 0.943 | -216.958   231.985 | 
  | Omnibus: | 4.539 | Durbin-Watson: | 1.088 | 
  | Prob(Omnibus): | 0.103 | Jarque-Bera (JB): | 2.373 | 
  | Skew: | -0.953 | Prob(JB): | 0.305 | 
  | Kurtosis: | 3.402 | Cond. No. | 1.46e+03 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.483 | 
  | Model: | OLS | Adj. R-squared: | 0.397 | 
  | Method: | Least Squares | F-statistic: | 5.611 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 0.0190 | 
  | Time: | 22:24:20 | Log-Likelihood: | -70.348 | 
  | No. Observations: | 15 | AIC: | 146.7 | 
  | Df Residuals: | 12 | BIC: | 148.8 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 465.7978 | 445.276 | 1.046 | 0.316 | -504.376  1435.971 | 
  | C(dose)[T.1] | 58.4868 | 18.439 | 3.172 | 0.008 | 18.311    98.662 | 
  | expression | -43.6690 | 48.796 | -0.895 | 0.388 | -149.986    62.648 | 
  | Omnibus: | 4.924 | Durbin-Watson: | 1.081 | 
  | Prob(Omnibus): | 0.085 | Jarque-Bera (JB): | 2.561 | 
  | Skew: | -0.980 | Prob(JB): | 0.278 | 
  | Kurtosis: | 3.507 | Cond. No. | 549. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.449 | 
  | Model: | OLS | Adj. R-squared: | 0.406 | 
  | Method: | Least Squares | F-statistic: | 10.58 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 0.00629 | 
  | Time: | 22:24:20 | Log-Likelihood: | -70.833 | 
  | No. Observations: | 15 | AIC: | 145.7 | 
  | Df Residuals: | 13 | BIC: | 147.1 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570    91.287 | 
  | C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527    81.866 | 
  | Omnibus: | 2.713 | Durbin-Watson: | 0.810 | 
  | Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 | 
  | Skew: | -0.843 | Prob(JB): | 0.393 | 
  | Kurtosis: | 2.619 | Cond. No. | 2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.050 | 
  | Model: | OLS | Adj. R-squared: | -0.023 | 
  | Method: | Least Squares | F-statistic: | 0.6846 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 0.423 | 
  | Time: | 22:24:20 | Log-Likelihood: | -74.915 | 
  | No. Observations: | 15 | AIC: | 153.8 | 
  | Df Residuals: | 13 | BIC: | 155.2 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -307.7927 | 485.306 | -0.634 | 0.537 | -1356.233   740.648 | 
  | expression | 43.4671 | 52.535 | 0.827 | 0.423 | -70.027   156.961 | 
  | Omnibus: | 0.248 | Durbin-Watson: | 1.328 | 
  | Prob(Omnibus): | 0.883 | Jarque-Bera (JB): | 0.425 | 
  | Skew: | -0.087 | Prob(JB): | 0.809 | 
  | Kurtosis: | 2.194 | Cond. No. | 458. |