AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.785 0.386 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.680
Model: OLS Adj. R-squared: 0.630
Method: Least Squares F-statistic: 13.49
Date: Thu, 03 Apr 2025 Prob (F-statistic): 5.97e-05
Time: 22:45:55 Log-Likelihood: -99.984
No. Observations: 23 AIC: 208.0
Df Residuals: 19 BIC: 212.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 3.0749 145.449 0.021 0.983 -301.353 307.503
C(dose)[T.1] 240.0749 178.126 1.348 0.194 -132.746 612.896
expression 6.9785 19.834 0.352 0.729 -34.534 48.491
expression:C(dose)[T.1] -25.0543 24.095 -1.040 0.311 -75.486 25.377
Omnibus: 2.064 Durbin-Watson: 1.995
Prob(Omnibus): 0.356 Jarque-Bera (JB): 1.476
Skew: 0.412 Prob(JB): 0.478
Kurtosis: 2.072 Cond. No. 441.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.629
Method: Least Squares F-statistic: 19.61
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.93e-05
Time: 22:45:55 Log-Likelihood: -100.62
No. Observations: 23 AIC: 207.2
Df Residuals: 20 BIC: 210.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 127.4643 82.902 1.538 0.140 -45.466 300.394
C(dose)[T.1] 55.0836 8.826 6.241 0.000 36.674 73.494
expression -9.9977 11.285 -0.886 0.386 -33.538 13.542
Omnibus: 0.570 Durbin-Watson: 2.018
Prob(Omnibus): 0.752 Jarque-Bera (JB): 0.663
Skew: 0.253 Prob(JB): 0.718
Kurtosis: 2.340 Cond. No. 146.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:45:55 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.005
Model: OLS Adj. R-squared: -0.043
Method: Least Squares F-statistic: 0.09681
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.759
Time: 22:45:56 Log-Likelihood: -113.05
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 37.2207 136.774 0.272 0.788 -247.216 321.657
expression 5.7344 18.430 0.311 0.759 -32.593 44.062
Omnibus: 3.628 Durbin-Watson: 2.464
Prob(Omnibus): 0.163 Jarque-Bera (JB): 1.681
Skew: 0.318 Prob(JB): 0.432
Kurtosis: 1.838 Cond. No. 144.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.810 0.203 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.526
Model: OLS Adj. R-squared: 0.396
Method: Least Squares F-statistic: 4.062
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0361
Time: 22:45:56 Log-Likelihood: -69.708
No. Observations: 15 AIC: 147.4
Df Residuals: 11 BIC: 150.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -65.2953 227.458 -0.287 0.779 -565.927 435.336
C(dose)[T.1] -46.5690 296.863 -0.157 0.878 -699.960 606.822
expression 16.7904 28.740 0.584 0.571 -46.467 80.047
expression:C(dose)[T.1] 12.1722 37.536 0.324 0.752 -70.444 94.789
Omnibus: 2.043 Durbin-Watson: 0.858
Prob(Omnibus): 0.360 Jarque-Bera (JB): 1.454
Skew: -0.575 Prob(JB): 0.483
Kurtosis: 1.999 Cond. No. 433.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.521
Model: OLS Adj. R-squared: 0.441
Method: Least Squares F-statistic: 6.527
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0121
Time: 22:45:56 Log-Likelihood: -69.779
No. Observations: 15 AIC: 145.6
Df Residuals: 12 BIC: 147.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -121.7037 140.986 -0.863 0.405 -428.887 185.479
C(dose)[T.1] 49.5708 14.675 3.378 0.005 17.598 81.544
expression 23.9264 17.784 1.345 0.203 -14.822 62.674
Omnibus: 2.315 Durbin-Watson: 0.975
Prob(Omnibus): 0.314 Jarque-Bera (JB): 1.555
Skew: -0.586 Prob(JB): 0.460
Kurtosis: 1.944 Cond. No. 155.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:45:56 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.066
Model: OLS Adj. R-squared: -0.006
Method: Least Squares F-statistic: 0.9120
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.357
Time: 22:45:56 Log-Likelihood: -74.792
No. Observations: 15 AIC: 153.6
Df Residuals: 13 BIC: 155.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -86.2697 188.673 -0.457 0.655 -493.873 321.333
expression 22.7871 23.861 0.955 0.357 -28.762 74.336
Omnibus: 0.418 Durbin-Watson: 1.752
Prob(Omnibus): 0.812 Jarque-Bera (JB): 0.515
Skew: 0.120 Prob(JB): 0.773
Kurtosis: 2.125 Cond. No. 154.