AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.842 0.370 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.670
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 12.85
Date: Wed, 09 Apr 2025 Prob (F-statistic): 8.11e-05
Time: 21:27:06 Log-Likelihood: -100.36
No. Observations: 23 AIC: 208.7
Df Residuals: 19 BIC: 213.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 47.6337 89.539 0.532 0.601 -139.773 235.040
C(dose)[T.1] 123.5610 107.058 1.154 0.263 -100.514 347.637
expression 1.5803 21.473 0.074 0.942 -43.364 46.525
expression:C(dose)[T.1] -15.3486 24.908 -0.616 0.545 -67.482 36.785
Omnibus: 0.641 Durbin-Watson: 1.944
Prob(Omnibus): 0.726 Jarque-Bera (JB): 0.689
Skew: 0.199 Prob(JB): 0.709
Kurtosis: 2.252 Cond. No. 165.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.630
Method: Least Squares F-statistic: 19.69
Date: Wed, 09 Apr 2025 Prob (F-statistic): 1.88e-05
Time: 21:27:06 Log-Likelihood: -100.59
No. Observations: 23 AIC: 207.2
Df Residuals: 20 BIC: 210.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 95.0918 44.955 2.115 0.047 1.317 188.867
C(dose)[T.1] 57.8837 9.918 5.836 0.000 37.196 78.572
expression -9.8272 10.711 -0.917 0.370 -32.170 12.516
Omnibus: 0.572 Durbin-Watson: 1.862
Prob(Omnibus): 0.751 Jarque-Bera (JB): 0.638
Skew: 0.156 Prob(JB): 0.727
Kurtosis: 2.246 Cond. No. 49.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Wed, 09 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 21:27:06 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.090
Model: OLS Adj. R-squared: 0.046
Method: Least Squares F-statistic: 2.068
Date: Wed, 09 Apr 2025 Prob (F-statistic): 0.165
Time: 21:27:06 Log-Likelihood: -112.02
No. Observations: 23 AIC: 228.0
Df Residuals: 21 BIC: 230.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -14.0868 65.590 -0.215 0.832 -150.488 122.314
expression 21.4090 14.887 1.438 0.165 -9.550 52.368
Omnibus: 4.091 Durbin-Watson: 2.180
Prob(Omnibus): 0.129 Jarque-Bera (JB): 1.862
Skew: 0.366 Prob(JB): 0.394
Kurtosis: 1.814 Cond. No. 44.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.134 0.721 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.536
Model: OLS Adj. R-squared: 0.409
Method: Least Squares F-statistic: 4.235
Date: Wed, 09 Apr 2025 Prob (F-statistic): 0.0322
Time: 21:27:06 Log-Likelihood: -69.542
No. Observations: 15 AIC: 147.1
Df Residuals: 11 BIC: 149.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 125.1023 73.101 1.711 0.115 -35.791 285.996
C(dose)[T.1] -93.8794 102.724 -0.914 0.380 -319.972 132.214
expression -12.0876 15.146 -0.798 0.442 -45.423 21.248
expression:C(dose)[T.1] 27.8119 20.059 1.386 0.193 -16.338 71.962
Omnibus: 1.570 Durbin-Watson: 1.026
Prob(Omnibus): 0.456 Jarque-Bera (JB): 0.998
Skew: -0.312 Prob(JB): 0.607
Kurtosis: 1.901 Cond. No. 101.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.455
Model: OLS Adj. R-squared: 0.364
Method: Least Squares F-statistic: 5.006
Date: Wed, 09 Apr 2025 Prob (F-statistic): 0.0262
Time: 21:27:06 Log-Likelihood: -70.750
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 49.4478 50.480 0.980 0.347 -60.539 159.434
C(dose)[T.1] 46.7097 17.066 2.737 0.018 9.526 83.893
expression 3.7685 10.305 0.366 0.721 -18.684 26.221
Omnibus: 2.062 Durbin-Watson: 0.723
Prob(Omnibus): 0.357 Jarque-Bera (JB): 1.581
Skew: -0.727 Prob(JB): 0.454
Kurtosis: 2.357 Cond. No. 35.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Wed, 09 Apr 2025 Prob (F-statistic): 0.00629
Time: 21:27:06 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.115
Model: OLS Adj. R-squared: 0.046
Method: Least Squares F-statistic: 1.681
Date: Wed, 09 Apr 2025 Prob (F-statistic): 0.217
Time: 21:27:06 Log-Likelihood: -74.388
No. Observations: 15 AIC: 152.8
Df Residuals: 13 BIC: 154.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 16.7822 60.059 0.279 0.784 -112.967 146.531
expression 15.0069 11.573 1.297 0.217 -9.996 40.009
Omnibus: 0.050 Durbin-Watson: 1.246
Prob(Omnibus): 0.975 Jarque-Bera (JB): 0.213
Skew: -0.109 Prob(JB): 0.899
Kurtosis: 2.459 Cond. No. 33.8