AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.251 0.622 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.712
Model: OLS Adj. R-squared: 0.666
Method: Least Squares F-statistic: 15.62
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.30e-05
Time: 03:48:10 Log-Likelihood: -98.807
No. Observations: 23 AIC: 205.6
Df Residuals: 19 BIC: 210.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 126.0676 80.326 1.569 0.133 -42.057 294.193
C(dose)[T.1] -174.6211 117.650 -1.484 0.154 -420.866 71.624
expression -28.2743 31.528 -0.897 0.381 -94.263 37.714
expression:C(dose)[T.1] 93.0854 47.558 1.957 0.065 -6.456 192.626
Omnibus: 1.021 Durbin-Watson: 1.696
Prob(Omnibus): 0.600 Jarque-Bera (JB): 0.927
Skew: -0.292 Prob(JB): 0.629
Kurtosis: 2.209 Cond. No. 105.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 18.85
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.50e-05
Time: 03:48:10 Log-Likelihood: -100.92
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 22.0986 64.379 0.343 0.735 -112.193 156.390
C(dose)[T.1] 55.0172 9.338 5.892 0.000 35.538 74.497
expression 12.6341 25.220 0.501 0.622 -39.973 65.241
Omnibus: 0.514 Durbin-Watson: 1.895
Prob(Omnibus): 0.773 Jarque-Bera (JB): 0.600
Skew: 0.125 Prob(JB): 0.741
Kurtosis: 2.249 Cond. No. 43.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:48:10 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.052
Model: OLS Adj. R-squared: 0.007
Method: Least Squares F-statistic: 1.149
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.296
Time: 03:48:10 Log-Likelihood: -112.49
No. Observations: 23 AIC: 229.0
Df Residuals: 21 BIC: 231.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 180.6353 94.400 1.914 0.069 -15.679 376.950
expression -40.7271 37.991 -1.072 0.296 -119.733 38.279
Omnibus: 1.214 Durbin-Watson: 2.521
Prob(Omnibus): 0.545 Jarque-Bera (JB): 1.069
Skew: 0.475 Prob(JB): 0.586
Kurtosis: 2.538 Cond. No. 38.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.284 0.604 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.464
Model: OLS Adj. R-squared: 0.318
Method: Least Squares F-statistic: 3.171
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0676
Time: 03:48:10 Log-Likelihood: -70.626
No. Observations: 15 AIC: 149.3
Df Residuals: 11 BIC: 152.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 41.5404 282.243 0.147 0.886 -579.672 662.753
C(dose)[T.1] 117.5952 292.966 0.401 0.696 -527.219 762.409
expression 10.6542 116.054 0.092 0.929 -244.779 266.088
expression:C(dose)[T.1] -25.6102 119.234 -0.215 0.834 -288.043 236.823
Omnibus: 1.691 Durbin-Watson: 0.784
Prob(Omnibus): 0.429 Jarque-Bera (JB): 1.319
Skew: -0.655 Prob(JB): 0.517
Kurtosis: 2.371 Cond. No. 184.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.462
Model: OLS Adj. R-squared: 0.372
Method: Least Squares F-statistic: 5.142
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0244
Time: 03:48:10 Log-Likelihood: -70.658
No. Observations: 15 AIC: 147.3
Df Residuals: 12 BIC: 149.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 100.4942 63.101 1.593 0.137 -36.992 237.980
C(dose)[T.1] 54.8101 18.790 2.917 0.013 13.870 95.750
expression -13.6081 25.545 -0.533 0.604 -69.265 42.049
Omnibus: 1.858 Durbin-Watson: 0.800
Prob(Omnibus): 0.395 Jarque-Bera (JB): 1.425
Skew: -0.691 Prob(JB): 0.490
Kurtosis: 2.390 Cond. No. 25.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:48:10 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.080
Model: OLS Adj. R-squared: 0.009
Method: Least Squares F-statistic: 1.125
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.308
Time: 03:48:10 Log-Likelihood: -74.677
No. Observations: 15 AIC: 153.4
Df Residuals: 13 BIC: 154.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 18.9893 71.063 0.267 0.793 -134.534 172.512
expression 28.1816 26.564 1.061 0.308 -29.207 85.570
Omnibus: 0.484 Durbin-Watson: 1.454
Prob(Omnibus): 0.785 Jarque-Bera (JB): 0.535
Skew: -0.050 Prob(JB): 0.765
Kurtosis: 2.080 Cond. No. 22.2