AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.011 | 0.919 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.665 |
Model: | OLS | Adj. R-squared: | 0.612 |
Method: | Least Squares | F-statistic: | 12.55 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.38e-05 |
Time: | 05:00:40 | Log-Likelihood: | -100.54 |
No. Observations: | 23 | AIC: | 209.1 |
Df Residuals: | 19 | BIC: | 213.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -4.0099 | 100.315 | -0.040 | 0.969 | -213.972 205.952 |
C(dose)[T.1] | 185.5426 | 142.185 | 1.305 | 0.207 | -112.054 483.139 |
expression | 7.8810 | 13.555 | 0.581 | 0.568 | -20.489 36.251 |
expression:C(dose)[T.1] | -17.9817 | 19.293 | -0.932 | 0.363 | -58.362 22.399 |
Omnibus: | 0.662 | Durbin-Watson: | 1.788 |
Prob(Omnibus): | 0.718 | Jarque-Bera (JB): | 0.727 |
Skew: | 0.303 | Prob(JB): | 0.695 |
Kurtosis: | 2.374 | Cond. No. | 314. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.51 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.82e-05 |
Time: | 05:00:40 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 61.5592 | 71.278 | 0.864 | 0.398 | -87.123 210.241 |
C(dose)[T.1] | 53.2753 | 8.788 | 6.062 | 0.000 | 34.944 71.606 |
expression | -0.9951 | 9.614 | -0.104 | 0.919 | -21.049 19.059 |
Omnibus: | 0.435 | Durbin-Watson: | 1.901 |
Prob(Omnibus): | 0.804 | Jarque-Bera (JB): | 0.550 |
Skew: | 0.078 | Prob(JB): | 0.760 |
Kurtosis: | 2.259 | Cond. No. | 122. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:00:40 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.005 |
Model: | OLS | Adj. R-squared: | -0.043 |
Method: | Least Squares | F-statistic: | 0.09890 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.756 |
Time: | 05:00:40 | Log-Likelihood: | -113.05 |
No. Observations: | 23 | AIC: | 230.1 |
Df Residuals: | 21 | BIC: | 232.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 116.2003 | 116.234 | 1.000 | 0.329 | -125.523 357.923 |
expression | -4.9587 | 15.768 | -0.314 | 0.756 | -37.750 27.833 |
Omnibus: | 2.702 | Durbin-Watson: | 2.550 |
Prob(Omnibus): | 0.259 | Jarque-Bera (JB): | 1.410 |
Skew: | 0.267 | Prob(JB): | 0.494 |
Kurtosis: | 1.912 | Cond. No. | 121. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.712 | 0.126 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.559 |
Model: | OLS | Adj. R-squared: | 0.439 |
Method: | Least Squares | F-statistic: | 4.651 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0247 |
Time: | 05:00:40 | Log-Likelihood: | -69.156 |
No. Observations: | 15 | AIC: | 146.3 |
Df Residuals: | 11 | BIC: | 149.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -165.7673 | 247.202 | -0.671 | 0.516 | -709.855 378.320 |
C(dose)[T.1] | -140.1684 | 396.247 | -0.354 | 0.730 | -1012.303 731.966 |
expression | 29.4365 | 31.175 | 0.944 | 0.365 | -39.179 98.052 |
expression:C(dose)[T.1] | 23.2812 | 49.629 | 0.469 | 0.648 | -85.951 132.513 |
Omnibus: | 3.563 | Durbin-Watson: | 0.863 |
Prob(Omnibus): | 0.168 | Jarque-Bera (JB): | 1.308 |
Skew: | -0.231 | Prob(JB): | 0.520 |
Kurtosis: | 1.629 | Cond. No. | 556. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.550 |
Model: | OLS | Adj. R-squared: | 0.475 |
Method: | Least Squares | F-statistic: | 7.344 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00826 |
Time: | 05:00:40 | Log-Likelihood: | -69.305 |
No. Observations: | 15 | AIC: | 144.6 |
Df Residuals: | 12 | BIC: | 146.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -238.5437 | 186.101 | -1.282 | 0.224 | -644.023 166.936 |
C(dose)[T.1] | 45.5835 | 14.384 | 3.169 | 0.008 | 14.244 76.923 |
expression | 38.6231 | 23.455 | 1.647 | 0.126 | -12.481 89.727 |
Omnibus: | 3.750 | Durbin-Watson: | 0.907 |
Prob(Omnibus): | 0.153 | Jarque-Bera (JB): | 1.319 |
Skew: | -0.212 | Prob(JB): | 0.517 |
Kurtosis: | 1.610 | Cond. No. | 213. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:00:40 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.174 |
Model: | OLS | Adj. R-squared: | 0.111 |
Method: | Least Squares | F-statistic: | 2.740 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.122 |
Time: | 05:00:40 | Log-Likelihood: | -73.866 |
No. Observations: | 15 | AIC: | 151.7 |
Df Residuals: | 13 | BIC: | 153.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -304.6219 | 240.809 | -1.265 | 0.228 | -824.858 215.615 |
expression | 49.9617 | 30.185 | 1.655 | 0.122 | -15.249 115.173 |
Omnibus: | 3.241 | Durbin-Watson: | 1.540 |
Prob(Omnibus): | 0.198 | Jarque-Bera (JB): | 1.356 |
Skew: | 0.326 | Prob(JB): | 0.508 |
Kurtosis: | 1.679 | Cond. No. | 211. |