AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.031 | 0.862 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.595 |
Method: | Least Squares | F-statistic: | 11.78 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000138 |
Time: | 05:05:39 | Log-Likelihood: | -101.02 |
No. Observations: | 23 | AIC: | 210.0 |
Df Residuals: | 19 | BIC: | 214.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 44.6520 | 213.904 | 0.209 | 0.837 | -403.055 492.359 |
C(dose)[T.1] | -32.3783 | 426.167 | -0.076 | 0.940 | -924.355 859.599 |
expression | 0.8623 | 19.294 | 0.045 | 0.965 | -39.520 41.245 |
expression:C(dose)[T.1] | 7.3575 | 37.192 | 0.198 | 0.845 | -70.487 85.202 |
Omnibus: | 0.373 | Durbin-Watson: | 1.906 |
Prob(Omnibus): | 0.830 | Jarque-Bera (JB): | 0.513 |
Skew: | 0.043 | Prob(JB): | 0.774 |
Kurtosis: | 2.274 | Cond. No. | 1.29e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.54 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.79e-05 |
Time: | 05:05:39 | Log-Likelihood: | -101.04 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 22.7100 | 178.452 | 0.127 | 0.900 | -349.534 394.954 |
C(dose)[T.1] | 51.8914 | 11.992 | 4.327 | 0.000 | 26.878 76.905 |
expression | 2.8423 | 16.094 | 0.177 | 0.862 | -30.729 36.413 |
Omnibus: | 0.331 | Durbin-Watson: | 1.897 |
Prob(Omnibus): | 0.848 | Jarque-Bera (JB): | 0.490 |
Skew: | 0.053 | Prob(JB): | 0.783 |
Kurtosis: | 2.293 | Cond. No. | 467. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:05:39 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.322 |
Model: | OLS | Adj. R-squared: | 0.289 |
Method: | Least Squares | F-statistic: | 9.952 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00478 |
Time: | 05:05:39 | Log-Likelihood: | -108.64 |
No. Observations: | 23 | AIC: | 221.3 |
Df Residuals: | 21 | BIC: | 223.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -490.8714 | 180.969 | -2.712 | 0.013 | -867.218 -114.525 |
expression | 50.3824 | 15.971 | 3.155 | 0.005 | 17.169 83.595 |
Omnibus: | 2.826 | Durbin-Watson: | 2.307 |
Prob(Omnibus): | 0.243 | Jarque-Bera (JB): | 1.276 |
Skew: | -0.107 | Prob(JB): | 0.528 |
Kurtosis: | 1.866 | Cond. No. | 348. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.220 | 0.098 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.596 |
Model: | OLS | Adj. R-squared: | 0.485 |
Method: | Least Squares | F-statistic: | 5.402 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0157 |
Time: | 05:05:39 | Log-Likelihood: | -68.508 |
No. Observations: | 15 | AIC: | 145.0 |
Df Residuals: | 11 | BIC: | 147.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 129.5934 | 381.595 | 0.340 | 0.741 | -710.292 969.479 |
C(dose)[T.1] | -323.7349 | 412.345 | -0.785 | 0.449 | -1231.300 583.830 |
expression | -5.9020 | 36.216 | -0.163 | 0.873 | -85.613 73.809 |
expression:C(dose)[T.1] | 35.5632 | 39.156 | 0.908 | 0.383 | -50.618 121.744 |
Omnibus: | 0.494 | Durbin-Watson: | 1.400 |
Prob(Omnibus): | 0.781 | Jarque-Bera (JB): | 0.000 |
Skew: | 0.013 | Prob(JB): | 1.00 |
Kurtosis: | 3.008 | Cond. No. | 966. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.565 |
Model: | OLS | Adj. R-squared: | 0.493 |
Method: | Least Squares | F-statistic: | 7.805 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00674 |
Time: | 05:05:39 | Log-Likelihood: | -69.050 |
No. Observations: | 15 | AIC: | 144.1 |
Df Residuals: | 12 | BIC: | 146.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -190.8562 | 144.309 | -1.323 | 0.211 | -505.278 123.565 |
C(dose)[T.1] | 50.5597 | 13.997 | 3.612 | 0.004 | 20.063 81.056 |
expression | 24.5219 | 13.667 | 1.794 | 0.098 | -5.255 54.299 |
Omnibus: | 0.130 | Durbin-Watson: | 1.173 |
Prob(Omnibus): | 0.937 | Jarque-Bera (JB): | 0.339 |
Skew: | 0.114 | Prob(JB): | 0.844 |
Kurtosis: | 2.300 | Cond. No. | 220. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:05:39 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.093 |
Model: | OLS | Adj. R-squared: | 0.023 |
Method: | Least Squares | F-statistic: | 1.330 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.270 |
Time: | 05:05:39 | Log-Likelihood: | -74.570 |
No. Observations: | 15 | AIC: | 153.1 |
Df Residuals: | 13 | BIC: | 154.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -135.7455 | 199.191 | -0.681 | 0.508 | -566.071 294.580 |
expression | 21.8422 | 18.942 | 1.153 | 0.270 | -19.081 62.765 |
Omnibus: | 0.067 | Durbin-Watson: | 1.742 |
Prob(Omnibus): | 0.967 | Jarque-Bera (JB): | 0.150 |
Skew: | 0.109 | Prob(JB): | 0.928 |
Kurtosis: | 2.561 | Cond. No. | 218. |