AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.160 0.693 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.670
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 12.89
Date: Mon, 27 Jan 2025 Prob (F-statistic): 7.96e-05
Time: 21:35:31 Log-Likelihood: -100.34
No. Observations: 23 AIC: 208.7
Df Residuals: 19 BIC: 213.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 114.7552 60.820 1.887 0.075 -12.543 242.053
C(dose)[T.1] -37.7198 87.867 -0.429 0.673 -221.628 146.188
expression -10.8946 10.890 -1.000 0.330 -33.687 11.898
expression:C(dose)[T.1] 16.5266 15.946 1.036 0.313 -16.849 49.902
Omnibus: 0.115 Durbin-Watson: 2.264
Prob(Omnibus): 0.944 Jarque-Bera (JB): 0.339
Skew: 0.018 Prob(JB): 0.844
Kurtosis: 2.406 Cond. No. 147.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 18.72
Date: Mon, 27 Jan 2025 Prob (F-statistic): 2.62e-05
Time: 21:35:31 Log-Likelihood: -100.97
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 71.9190 44.701 1.609 0.123 -21.326 165.164
C(dose)[T.1] 52.8903 8.806 6.006 0.000 34.521 71.260
expression -3.1868 7.970 -0.400 0.693 -19.811 13.438
Omnibus: 0.644 Durbin-Watson: 1.978
Prob(Omnibus): 0.725 Jarque-Bera (JB): 0.640
Skew: 0.003 Prob(JB): 0.726
Kurtosis: 2.183 Cond. No. 58.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Mon, 27 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 21:35:31 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.024
Model: OLS Adj. R-squared: -0.023
Method: Least Squares F-statistic: 0.5139
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.481
Time: 21:35:31 Log-Likelihood: -112.83
No. Observations: 23 AIC: 229.7
Df Residuals: 21 BIC: 231.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 130.5586 71.281 1.832 0.081 -17.678 278.795
expression -9.2599 12.918 -0.717 0.481 -36.124 17.604
Omnibus: 2.935 Durbin-Watson: 2.590
Prob(Omnibus): 0.230 Jarque-Bera (JB): 1.625
Skew: 0.366 Prob(JB): 0.444
Kurtosis: 1.922 Cond. No. 57.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.158 0.698 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.560
Model: OLS Adj. R-squared: 0.440
Method: Least Squares F-statistic: 4.668
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0244
Time: 21:35:31 Log-Likelihood: -69.142
No. Observations: 15 AIC: 146.3
Df Residuals: 11 BIC: 149.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 112.0762 73.030 1.535 0.153 -48.662 272.815
C(dose)[T.1] -152.0697 125.113 -1.215 0.250 -427.441 123.302
expression -8.0509 13.026 -0.618 0.549 -36.721 20.619
expression:C(dose)[T.1] 35.3988 21.938 1.614 0.135 -12.886 83.683
Omnibus: 0.852 Durbin-Watson: 0.724
Prob(Omnibus): 0.653 Jarque-Bera (JB): 0.799
Skew: -0.425 Prob(JB): 0.671
Kurtosis: 2.254 Cond. No. 125.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.456
Model: OLS Adj. R-squared: 0.365
Method: Least Squares F-statistic: 5.028
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0259
Time: 21:35:31 Log-Likelihood: -70.735
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 42.8634 62.932 0.681 0.509 -94.254 179.981
C(dose)[T.1] 48.3936 15.768 3.069 0.010 14.039 82.748
expression 4.4296 11.160 0.397 0.698 -19.885 28.744
Omnibus: 2.229 Durbin-Watson: 0.796
Prob(Omnibus): 0.328 Jarque-Bera (JB): 1.669
Skew: -0.764 Prob(JB): 0.434
Kurtosis: 2.421 Cond. No. 47.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00629
Time: 21:35:31 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.029
Model: OLS Adj. R-squared: -0.046
Method: Least Squares F-statistic: 0.3857
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.545
Time: 21:35:31 Log-Likelihood: -75.081
No. Observations: 15 AIC: 154.2
Df Residuals: 13 BIC: 155.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 43.8852 80.780 0.543 0.596 -130.630 218.400
expression 8.8229 14.206 0.621 0.545 -21.868 39.514
Omnibus: 0.484 Durbin-Watson: 1.532
Prob(Omnibus): 0.785 Jarque-Bera (JB): 0.540
Skew: -0.092 Prob(JB): 0.763
Kurtosis: 2.089 Cond. No. 47.3