AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.766 0.392 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.610
Method: Least Squares F-statistic: 12.48
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.69e-05
Time: 03:52:26 Log-Likelihood: -100.58
No. Observations: 23 AIC: 209.2
Df Residuals: 19 BIC: 213.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -105.7228 194.479 -0.544 0.593 -512.772 301.326
C(dose)[T.1] 133.5318 292.533 0.456 0.653 -478.747 745.811
expression 16.5738 20.144 0.823 0.421 -25.588 58.736
expression:C(dose)[T.1] -8.4588 30.000 -0.282 0.781 -71.249 54.331
Omnibus: 0.245 Durbin-Watson: 1.574
Prob(Omnibus): 0.885 Jarque-Bera (JB): 0.436
Skew: 0.020 Prob(JB): 0.804
Kurtosis: 2.327 Cond. No. 830.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.628
Method: Least Squares F-statistic: 19.59
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.95e-05
Time: 03:52:26 Log-Likelihood: -100.63
No. Observations: 23 AIC: 207.3
Df Residuals: 20 BIC: 210.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -68.9201 140.815 -0.489 0.630 -362.656 224.815
C(dose)[T.1] 51.0894 8.982 5.688 0.000 32.354 69.825
expression 12.7599 14.580 0.875 0.392 -17.653 43.173
Omnibus: 0.099 Durbin-Watson: 1.672
Prob(Omnibus): 0.952 Jarque-Bera (JB): 0.324
Skew: 0.010 Prob(JB): 0.850
Kurtosis: 2.419 Cond. No. 323.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:52:26 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.115
Model: OLS Adj. R-squared: 0.073
Method: Least Squares F-statistic: 2.734
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.113
Time: 03:52:26 Log-Likelihood: -111.70
No. Observations: 23 AIC: 227.4
Df Residuals: 21 BIC: 229.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -275.3232 214.833 -1.282 0.214 -722.094 171.447
expression 36.4747 22.060 1.653 0.113 -9.401 82.350
Omnibus: 2.583 Durbin-Watson: 2.306
Prob(Omnibus): 0.275 Jarque-Bera (JB): 1.472
Skew: 0.326 Prob(JB): 0.479
Kurtosis: 1.947 Cond. No. 311.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.134 0.308 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.641
Model: OLS Adj. R-squared: 0.542
Method: Least Squares F-statistic: 6.533
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00847
Time: 03:52:26 Log-Likelihood: -67.627
No. Observations: 15 AIC: 143.3
Df Residuals: 11 BIC: 146.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 34.9377 220.857 0.158 0.877 -451.165 521.041
C(dose)[T.1] 872.6293 394.821 2.210 0.049 3.635 1741.624
expression 3.5084 23.825 0.147 0.886 -48.931 55.948
expression:C(dose)[T.1] -90.9586 43.312 -2.100 0.060 -186.289 4.371
Omnibus: 0.056 Durbin-Watson: 1.242
Prob(Omnibus): 0.972 Jarque-Bera (JB): 0.247
Skew: -0.107 Prob(JB): 0.884
Kurtosis: 2.409 Cond. No. 675.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.496
Model: OLS Adj. R-squared: 0.412
Method: Least Squares F-statistic: 5.914
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0163
Time: 03:52:26 Log-Likelihood: -70.156
No. Observations: 15 AIC: 146.3
Df Residuals: 12 BIC: 148.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 289.8278 209.098 1.386 0.191 -165.757 745.413
C(dose)[T.1] 44.0008 15.816 2.782 0.017 9.541 78.460
expression -24.0150 22.548 -1.065 0.308 -73.142 25.112
Omnibus: 1.021 Durbin-Watson: 0.802
Prob(Omnibus): 0.600 Jarque-Bera (JB): 0.908
Skew: -0.464 Prob(JB): 0.635
Kurtosis: 2.231 Cond. No. 258.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:52:26 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.172
Model: OLS Adj. R-squared: 0.108
Method: Least Squares F-statistic: 2.692
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.125
Time: 03:52:26 Log-Likelihood: -73.889
No. Observations: 15 AIC: 151.8
Df Residuals: 13 BIC: 153.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 490.2411 241.890 2.027 0.064 -32.330 1012.812
expression -43.3630 26.430 -1.641 0.125 -100.461 13.735
Omnibus: 0.338 Durbin-Watson: 1.482
Prob(Omnibus): 0.844 Jarque-Bera (JB): 0.479
Skew: -0.151 Prob(JB): 0.787
Kurtosis: 2.179 Cond. No. 242.