AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.862 | 0.364 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.682 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 13.57 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.75e-05 |
Time: | 04:30:58 | Log-Likelihood: | -99.937 |
No. Observations: | 23 | AIC: | 207.9 |
Df Residuals: | 19 | BIC: | 212.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 151.5963 | 392.744 | 0.386 | 0.704 | -670.427 973.619 |
C(dose)[T.1] | 853.5251 | 761.467 | 1.121 | 0.276 | -740.244 2447.295 |
expression | -8.2438 | 33.242 | -0.248 | 0.807 | -77.819 61.332 |
expression:C(dose)[T.1] | -66.3652 | 63.602 | -1.043 | 0.310 | -199.486 66.756 |
Omnibus: | 0.233 | Durbin-Watson: | 1.808 |
Prob(Omnibus): | 0.890 | Jarque-Bera (JB): | 0.428 |
Skew: | 0.081 | Prob(JB): | 0.807 |
Kurtosis: | 2.352 | Cond. No. | 2.53e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.664 |
Model: | OLS | Adj. R-squared: | 0.630 |
Method: | Least Squares | F-statistic: | 19.72 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.86e-05 |
Time: | 04:30:58 | Log-Likelihood: | -100.58 |
No. Observations: | 23 | AIC: | 207.2 |
Df Residuals: | 20 | BIC: | 210.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 365.7545 | 335.590 | 1.090 | 0.289 | -334.275 1065.784 |
C(dose)[T.1] | 59.0569 | 10.568 | 5.588 | 0.000 | 37.013 81.101 |
expression | -26.3720 | 28.403 | -0.928 | 0.364 | -85.619 32.875 |
Omnibus: | 1.593 | Durbin-Watson: | 2.159 |
Prob(Omnibus): | 0.451 | Jarque-Bera (JB): | 0.959 |
Skew: | -0.011 | Prob(JB): | 0.619 |
Kurtosis: | 2.000 | Cond. No. | 940. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:30:58 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.138 |
Model: | OLS | Adj. R-squared: | 0.097 |
Method: | Least Squares | F-statistic: | 3.368 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0807 |
Time: | 04:30:58 | Log-Likelihood: | -111.39 |
No. Observations: | 23 | AIC: | 226.8 |
Df Residuals: | 21 | BIC: | 229.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -708.6285 | 429.616 | -1.649 | 0.114 | -1602.064 184.807 |
expression | 66.1517 | 36.046 | 1.835 | 0.081 | -8.809 141.112 |
Omnibus: | 0.905 | Durbin-Watson: | 1.957 |
Prob(Omnibus): | 0.636 | Jarque-Bera (JB): | 0.899 |
Skew: | 0.379 | Prob(JB): | 0.638 |
Kurtosis: | 2.397 | Cond. No. | 770. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.026 | 0.875 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.463 |
Model: | OLS | Adj. R-squared: | 0.317 |
Method: | Least Squares | F-statistic: | 3.164 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0680 |
Time: | 04:30:58 | Log-Likelihood: | -70.634 |
No. Observations: | 15 | AIC: | 149.3 |
Df Residuals: | 11 | BIC: | 152.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -382.1073 | 869.816 | -0.439 | 0.669 | -2296.560 1532.346 |
C(dose)[T.1] | 601.8306 | 1064.338 | 0.565 | 0.583 | -1740.763 2944.424 |
expression | 39.5190 | 76.459 | 0.517 | 0.615 | -128.766 207.804 |
expression:C(dose)[T.1] | -48.3915 | 92.906 | -0.521 | 0.613 | -252.876 156.093 |
Omnibus: | 2.916 | Durbin-Watson: | 0.870 |
Prob(Omnibus): | 0.233 | Jarque-Bera (JB): | 1.898 |
Skew: | -0.862 | Prob(JB): | 0.387 |
Kurtosis: | 2.739 | Cond. No. | 2.20e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 4.908 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0277 |
Time: | 04:30:58 | Log-Likelihood: | -70.817 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -9.2892 | 478.984 | -0.019 | 0.985 | -1052.905 1034.327 |
C(dose)[T.1] | 47.5460 | 18.797 | 2.529 | 0.026 | 6.591 88.501 |
expression | 6.7443 | 42.096 | 0.160 | 0.875 | -84.974 98.463 |
Omnibus: | 2.682 | Durbin-Watson: | 0.821 |
Prob(Omnibus): | 0.262 | Jarque-Bera (JB): | 1.915 |
Skew: | -0.844 | Prob(JB): | 0.384 |
Kurtosis: | 2.539 | Cond. No. | 709. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:30:58 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.157 |
Model: | OLS | Adj. R-squared: | 0.092 |
Method: | Least Squares | F-statistic: | 2.415 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.144 |
Time: | 04:30:58 | Log-Likelihood: | -74.022 |
No. Observations: | 15 | AIC: | 152.0 |
Df Residuals: | 13 | BIC: | 153.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -655.3434 | 482.042 | -1.360 | 0.197 | -1696.731 386.044 |
expression | 65.0990 | 41.888 | 1.554 | 0.144 | -25.395 155.593 |
Omnibus: | 0.979 | Durbin-Watson: | 1.741 |
Prob(Omnibus): | 0.613 | Jarque-Bera (JB): | 0.748 |
Skew: | 0.195 | Prob(JB): | 0.688 |
Kurtosis: | 1.977 | Cond. No. | 599. |