AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.539 0.471 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.707
Model: OLS Adj. R-squared: 0.661
Method: Least Squares F-statistic: 15.31
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.63e-05
Time: 05:17:39 Log-Likelihood: -98.972
No. Observations: 23 AIC: 205.9
Df Residuals: 19 BIC: 210.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -817.0148 447.708 -1.825 0.084 -1754.079 120.050
C(dose)[T.1] 919.0908 483.441 1.901 0.073 -92.762 1930.944
expression 92.5152 47.538 1.946 0.067 -6.984 192.014
expression:C(dose)[T.1] -91.9238 51.463 -1.786 0.090 -199.638 15.791
Omnibus: 0.553 Durbin-Watson: 1.779
Prob(Omnibus): 0.759 Jarque-Bera (JB): 0.632
Skew: -0.296 Prob(JB): 0.729
Kurtosis: 2.445 Cond. No. 1.68e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 19.26
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.17e-05
Time: 05:17:39 Log-Likelihood: -100.76
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -78.3737 180.725 -0.434 0.669 -455.360 298.612
C(dose)[T.1] 55.7140 9.240 6.030 0.000 36.440 74.988
expression 14.0789 19.181 0.734 0.471 -25.931 54.089
Omnibus: 0.131 Durbin-Watson: 1.805
Prob(Omnibus): 0.936 Jarque-Bera (JB): 0.349
Skew: -0.064 Prob(JB): 0.840
Kurtosis: 2.410 Cond. No. 395.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:17:39 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.037
Model: OLS Adj. R-squared: -0.009
Method: Least Squares F-statistic: 0.8079
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.379
Time: 05:17:39 Log-Likelihood: -112.67
No. Observations: 23 AIC: 229.3
Df Residuals: 21 BIC: 231.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 326.6745 274.848 1.189 0.248 -244.903 898.252
expression -26.4512 29.429 -0.899 0.379 -87.652 34.749
Omnibus: 1.790 Durbin-Watson: 2.551
Prob(Omnibus): 0.409 Jarque-Bera (JB): 1.256
Skew: 0.328 Prob(JB): 0.534
Kurtosis: 2.062 Cond. No. 367.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.164 0.693 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.489
Model: OLS Adj. R-squared: 0.349
Method: Least Squares F-statistic: 3.503
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0531
Time: 05:17:39 Log-Likelihood: -70.271
No. Observations: 15 AIC: 148.5
Df Residuals: 11 BIC: 151.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 188.9057 144.374 1.308 0.217 -128.860 506.671
C(dose)[T.1] -141.0657 232.295 -0.607 0.556 -652.344 370.212
expression -16.4708 19.512 -0.844 0.417 -59.417 26.476
expression:C(dose)[T.1] 25.2043 30.211 0.834 0.422 -41.290 91.699
Omnibus: 3.863 Durbin-Watson: 1.082
Prob(Omnibus): 0.145 Jarque-Bera (JB): 2.375
Skew: -0.974 Prob(JB): 0.305
Kurtosis: 2.949 Cond. No. 294.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.456
Model: OLS Adj. R-squared: 0.366
Method: Least Squares F-statistic: 5.034
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0259
Time: 05:17:39 Log-Likelihood: -70.731
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 111.3635 109.067 1.021 0.327 -126.273 349.000
C(dose)[T.1] 52.1791 17.281 3.020 0.011 14.528 89.830
expression -5.9570 14.707 -0.405 0.693 -38.001 26.087
Omnibus: 2.625 Durbin-Watson: 0.938
Prob(Omnibus): 0.269 Jarque-Bera (JB): 1.770
Skew: -0.824 Prob(JB): 0.413
Kurtosis: 2.655 Cond. No. 110.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:17:39 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.043
Model: OLS Adj. R-squared: -0.031
Method: Least Squares F-statistic: 0.5847
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.458
Time: 05:17:39 Log-Likelihood: -74.970
No. Observations: 15 AIC: 153.9
Df Residuals: 13 BIC: 155.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -5.4253 129.975 -0.042 0.967 -286.219 275.368
expression 12.9662 16.957 0.765 0.458 -23.668 49.600
Omnibus: 0.741 Durbin-Watson: 1.330
Prob(Omnibus): 0.690 Jarque-Bera (JB): 0.645
Skew: -0.130 Prob(JB): 0.724
Kurtosis: 2.017 Cond. No. 102.