AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.005 0.945 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.608
Method: Least Squares F-statistic: 12.37
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000102
Time: 04:26:25 Log-Likelihood: -100.65
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 76.3450 37.946 2.012 0.059 -3.077 155.767
C(dose)[T.1] 5.1695 58.784 0.088 0.931 -117.867 128.207
expression -4.1235 6.976 -0.591 0.561 -18.725 10.478
expression:C(dose)[T.1] 8.9149 10.751 0.829 0.417 -13.587 31.416
Omnibus: 0.336 Durbin-Watson: 1.958
Prob(Omnibus): 0.846 Jarque-Bera (JB): 0.495
Skew: 0.083 Prob(JB): 0.781
Kurtosis: 2.301 Cond. No. 94.1

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.50
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.83e-05
Time: 04:26:25 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 56.1930 28.915 1.943 0.066 -4.122 116.508
C(dose)[T.1] 53.3609 8.775 6.081 0.000 35.056 71.666
expression -0.3697 5.266 -0.070 0.945 -11.355 10.616
Omnibus: 0.348 Durbin-Watson: 1.886
Prob(Omnibus): 0.840 Jarque-Bera (JB): 0.500
Skew: 0.051 Prob(JB): 0.779
Kurtosis: 2.285 Cond. No. 37.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:26:25 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.01005
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.921
Time: 04:26:25 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 75.0267 47.353 1.584 0.128 -23.450 173.504
expression 0.8688 8.668 0.100 0.921 -17.157 18.895
Omnibus: 3.214 Durbin-Watson: 2.485
Prob(Omnibus): 0.200 Jarque-Bera (JB): 1.539
Skew: 0.281 Prob(JB): 0.463
Kurtosis: 1.864 Cond. No. 37.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.317 0.583 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.478
Model: OLS Adj. R-squared: 0.336
Method: Least Squares F-statistic: 3.358
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0589
Time: 04:26:25 Log-Likelihood: -70.424
No. Observations: 15 AIC: 148.8
Df Residuals: 11 BIC: 151.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -25.1749 119.018 -0.212 0.836 -287.132 236.782
C(dose)[T.1] 153.0093 188.203 0.813 0.433 -261.222 567.241
expression 17.6943 22.632 0.782 0.451 -32.118 67.506
expression:C(dose)[T.1] -19.7579 35.050 -0.564 0.584 -96.902 57.386
Omnibus: 2.913 Durbin-Watson: 0.709
Prob(Omnibus): 0.233 Jarque-Bera (JB): 1.944
Skew: -0.868 Prob(JB): 0.378
Kurtosis: 2.693 Cond. No. 168.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.463
Model: OLS Adj. R-squared: 0.373
Method: Least Squares F-statistic: 5.173
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0240
Time: 04:26:25 Log-Likelihood: -70.637
No. Observations: 15 AIC: 147.3
Df Residuals: 12 BIC: 149.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 17.9373 88.563 0.203 0.843 -175.025 210.900
C(dose)[T.1] 47.3189 15.889 2.978 0.012 12.700 81.938
expression 9.4566 16.783 0.563 0.583 -27.110 46.023
Omnibus: 2.281 Durbin-Watson: 0.830
Prob(Omnibus): 0.320 Jarque-Bera (JB): 1.644
Skew: -0.774 Prob(JB): 0.440
Kurtosis: 2.514 Cond. No. 63.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:26:25 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.066
Model: OLS Adj. R-squared: -0.006
Method: Least Squares F-statistic: 0.9196
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.355
Time: 04:26:26 Log-Likelihood: -74.787
No. Observations: 15 AIC: 153.6
Df Residuals: 13 BIC: 155.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -12.7927 111.446 -0.115 0.910 -253.558 227.973
expression 19.9385 20.791 0.959 0.355 -24.978 64.855
Omnibus: 0.764 Durbin-Watson: 1.712
Prob(Omnibus): 0.683 Jarque-Bera (JB): 0.709
Skew: 0.272 Prob(JB): 0.702
Kurtosis: 2.084 Cond. No. 62.9