AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.812 | 0.378 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.674 |
Model: | OLS | Adj. R-squared: | 0.623 |
Method: | Least Squares | F-statistic: | 13.11 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.14e-05 |
Time: | 04:28:37 | Log-Likelihood: | -100.20 |
No. Observations: | 23 | AIC: | 208.4 |
Df Residuals: | 19 | BIC: | 212.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 31.4925 | 92.455 | 0.341 | 0.737 | -162.018 225.003 |
C(dose)[T.1] | -76.4755 | 158.290 | -0.483 | 0.635 | -407.781 254.830 |
expression | 2.9389 | 11.936 | 0.246 | 0.808 | -22.044 27.922 |
expression:C(dose)[T.1] | 16.7837 | 20.441 | 0.821 | 0.422 | -25.999 59.567 |
Omnibus: | 0.506 | Durbin-Watson: | 1.857 |
Prob(Omnibus): | 0.777 | Jarque-Bera (JB): | 0.411 |
Skew: | -0.294 | Prob(JB): | 0.814 |
Kurtosis: | 2.711 | Cond. No. | 349. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.663 |
Model: | OLS | Adj. R-squared: | 0.629 |
Method: | Least Squares | F-statistic: | 19.65 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.90e-05 |
Time: | 04:28:37 | Log-Likelihood: | -100.60 |
No. Observations: | 23 | AIC: | 207.2 |
Df Residuals: | 20 | BIC: | 210.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -12.7436 | 74.521 | -0.171 | 0.866 | -168.192 142.705 |
C(dose)[T.1] | 53.2995 | 8.597 | 6.200 | 0.000 | 35.366 71.233 |
expression | 8.6620 | 9.611 | 0.901 | 0.378 | -11.385 28.709 |
Omnibus: | 0.268 | Durbin-Watson: | 1.873 |
Prob(Omnibus): | 0.875 | Jarque-Bera (JB): | 0.429 |
Skew: | -0.192 | Prob(JB): | 0.807 |
Kurtosis: | 2.452 | Cond. No. | 137. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:28:37 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.015 |
Model: | OLS | Adj. R-squared: | -0.032 |
Method: | Least Squares | F-statistic: | 0.3117 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.583 |
Time: | 04:28:37 | Log-Likelihood: | -112.94 |
No. Observations: | 23 | AIC: | 229.9 |
Df Residuals: | 21 | BIC: | 232.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 10.5133 | 124.154 | 0.085 | 0.933 | -247.679 268.706 |
expression | 8.9510 | 16.032 | 0.558 | 0.583 | -24.389 42.291 |
Omnibus: | 3.431 | Durbin-Watson: | 2.481 |
Prob(Omnibus): | 0.180 | Jarque-Bera (JB): | 1.462 |
Skew: | 0.191 | Prob(JB): | 0.481 |
Kurtosis: | 1.825 | Cond. No. | 136. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
7.535 | 0.018 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.667 |
Model: | OLS | Adj. R-squared: | 0.576 |
Method: | Least Squares | F-statistic: | 7.344 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00565 |
Time: | 04:28:37 | Log-Likelihood: | -67.053 |
No. Observations: | 15 | AIC: | 142.1 |
Df Residuals: | 11 | BIC: | 144.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -197.5400 | 149.889 | -1.318 | 0.214 | -527.443 132.363 |
C(dose)[T.1] | -45.0043 | 232.871 | -0.193 | 0.850 | -557.550 467.541 |
expression | 34.6655 | 19.572 | 1.771 | 0.104 | -8.412 77.743 |
expression:C(dose)[T.1] | 13.2386 | 30.769 | 0.430 | 0.675 | -54.483 80.960 |
Omnibus: | 2.876 | Durbin-Watson: | 1.048 |
Prob(Omnibus): | 0.237 | Jarque-Bera (JB): | 1.378 |
Skew: | -0.736 | Prob(JB): | 0.502 |
Kurtosis: | 3.188 | Cond. No. | 359. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.661 |
Model: | OLS | Adj. R-squared: | 0.605 |
Method: | Least Squares | F-statistic: | 11.72 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00151 |
Time: | 04:28:37 | Log-Likelihood: | -67.178 |
No. Observations: | 15 | AIC: | 140.4 |
Df Residuals: | 12 | BIC: | 142.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -238.4831 | 111.807 | -2.133 | 0.054 | -482.090 5.124 |
C(dose)[T.1] | 55.0358 | 12.518 | 4.396 | 0.001 | 27.761 82.311 |
expression | 40.0220 | 14.580 | 2.745 | 0.018 | 8.255 71.789 |
Omnibus: | 1.391 | Durbin-Watson: | 1.145 |
Prob(Omnibus): | 0.499 | Jarque-Bera (JB): | 0.913 |
Skew: | -0.579 | Prob(JB): | 0.633 |
Kurtosis: | 2.654 | Cond. No. | 140. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:28:37 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.116 |
Model: | OLS | Adj. R-squared: | 0.048 |
Method: | Least Squares | F-statistic: | 1.706 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.214 |
Time: | 04:28:37 | Log-Likelihood: | -74.375 |
No. Observations: | 15 | AIC: | 152.8 |
Df Residuals: | 13 | BIC: | 154.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -126.7177 | 169.022 | -0.750 | 0.467 | -491.868 238.432 |
expression | 29.1291 | 22.305 | 1.306 | 0.214 | -19.057 77.315 |
Omnibus: | 2.940 | Durbin-Watson: | 2.010 |
Prob(Omnibus): | 0.230 | Jarque-Bera (JB): | 1.313 |
Skew: | 0.333 | Prob(JB): | 0.519 |
Kurtosis: | 1.712 | Cond. No. | 136. |