AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.458 | 0.506 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.693 |
Model: | OLS | Adj. R-squared: | 0.644 |
Method: | Least Squares | F-statistic: | 14.26 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 4.18e-05 |
Time: | 04:35:25 | Log-Likelihood: | -99.542 |
No. Observations: | 23 | AIC: | 207.1 |
Df Residuals: | 19 | BIC: | 211.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -5.7426 | 441.688 | -0.013 | 0.990 | -930.206 918.721 |
C(dose)[T.1] | 1388.4089 | 897.037 | 1.548 | 0.138 | -489.112 3265.929 |
expression | 4.9000 | 36.097 | 0.136 | 0.893 | -70.653 80.453 |
expression:C(dose)[T.1] | -107.3984 | 72.399 | -1.483 | 0.154 | -258.931 44.134 |
Omnibus: | 0.585 | Durbin-Watson: | 1.852 |
Prob(Omnibus): | 0.746 | Jarque-Bera (JB): | 0.033 |
Skew: | 0.052 | Prob(JB): | 0.984 |
Kurtosis: | 3.153 | Cond. No. | 3.12e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.623 |
Method: | Least Squares | F-statistic: | 19.15 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.26e-05 |
Time: | 04:35:25 | Log-Likelihood: | -100.80 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 320.9098 | 394.207 | 0.814 | 0.425 | -501.392 1143.212 |
C(dose)[T.1] | 57.8154 | 10.908 | 5.300 | 0.000 | 35.061 80.570 |
expression | -21.7983 | 32.216 | -0.677 | 0.506 | -89.000 45.403 |
Omnibus: | 0.715 | Durbin-Watson: | 1.857 |
Prob(Omnibus): | 0.699 | Jarque-Bera (JB): | 0.672 |
Skew: | -0.036 | Prob(JB): | 0.715 |
Kurtosis: | 2.166 | Cond. No. | 1.13e+03 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:35:25 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.175 |
Model: | OLS | Adj. R-squared: | 0.136 |
Method: | Least Squares | F-statistic: | 4.455 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0470 |
Time: | 04:35:25 | Log-Likelihood: | -110.89 |
No. Observations: | 23 | AIC: | 225.8 |
Df Residuals: | 21 | BIC: | 228.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -929.1376 | 477.996 | -1.944 | 0.065 | -1923.185 64.910 |
expression | 81.7999 | 38.753 | 2.111 | 0.047 | 1.208 162.392 |
Omnibus: | 1.740 | Durbin-Watson: | 2.235 |
Prob(Omnibus): | 0.419 | Jarque-Bera (JB): | 1.487 |
Skew: | 0.497 | Prob(JB): | 0.475 |
Kurtosis: | 2.249 | Cond. No. | 905. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.534 | 0.479 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.526 |
Model: | OLS | Adj. R-squared: | 0.396 |
Method: | Least Squares | F-statistic: | 4.064 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0360 |
Time: | 04:35:25 | Log-Likelihood: | -69.705 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 11 | BIC: | 150.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 492.8971 | 337.742 | 1.459 | 0.172 | -250.468 1236.262 |
C(dose)[T.1] | -575.4686 | 562.827 | -1.022 | 0.329 | -1814.243 663.306 |
expression | -38.5660 | 30.597 | -1.260 | 0.234 | -105.910 28.779 |
expression:C(dose)[T.1] | 56.4652 | 50.715 | 1.113 | 0.289 | -55.158 168.089 |
Omnibus: | 1.422 | Durbin-Watson: | 1.050 |
Prob(Omnibus): | 0.491 | Jarque-Bera (JB): | 0.934 |
Skew: | -0.586 | Prob(JB): | 0.627 |
Kurtosis: | 2.655 | Cond. No. | 1.04e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.472 |
Model: | OLS | Adj. R-squared: | 0.384 |
Method: | Least Squares | F-statistic: | 5.369 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0216 |
Time: | 04:35:25 | Log-Likelihood: | -70.506 |
No. Observations: | 15 | AIC: | 147.0 |
Df Residuals: | 12 | BIC: | 149.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 266.1519 | 272.110 | 0.978 | 0.347 | -326.724 859.028 |
C(dose)[T.1] | 50.9353 | 15.583 | 3.269 | 0.007 | 16.982 84.888 |
expression | -18.0130 | 24.644 | -0.731 | 0.479 | -71.707 35.681 |
Omnibus: | 3.942 | Durbin-Watson: | 0.736 |
Prob(Omnibus): | 0.139 | Jarque-Bera (JB): | 2.427 |
Skew: | -0.985 | Prob(JB): | 0.297 |
Kurtosis: | 2.957 | Cond. No. | 396. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:35:25 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.002 |
Model: | OLS | Adj. R-squared: | -0.074 |
Method: | Least Squares | F-statistic: | 0.03157 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.862 |
Time: | 04:35:25 | Log-Likelihood: | -75.282 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 157.0216 | 356.727 | 0.440 | 0.667 | -613.639 927.683 |
expression | -5.7160 | 32.172 | -0.178 | 0.862 | -75.219 63.787 |
Omnibus: | 1.022 | Durbin-Watson: | 1.660 |
Prob(Omnibus): | 0.600 | Jarque-Bera (JB): | 0.725 |
Skew: | 0.094 | Prob(JB): | 0.696 |
Kurtosis: | 1.940 | Cond. No. | 393. |