AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.335 0.262 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.681
Model: OLS Adj. R-squared: 0.631
Method: Least Squares F-statistic: 13.55
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.81e-05
Time: 04:01:51 Log-Likelihood: -99.950
No. Observations: 23 AIC: 207.9
Df Residuals: 19 BIC: 212.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 75.6905 42.073 1.799 0.088 -12.369 163.750
C(dose)[T.1] 108.7402 73.213 1.485 0.154 -44.497 261.977
expression -4.5843 8.889 -0.516 0.612 -23.189 14.020
expression:C(dose)[T.1] -12.6302 16.033 -0.788 0.441 -46.188 20.927
Omnibus: 0.056 Durbin-Watson: 1.817
Prob(Omnibus): 0.972 Jarque-Bera (JB): 0.061
Skew: -0.017 Prob(JB): 0.970
Kurtosis: 2.750 Cond. No. 98.7

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.671
Model: OLS Adj. R-squared: 0.638
Method: Least Squares F-statistic: 20.40
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.48e-05
Time: 04:01:51 Log-Likelihood: -100.32
No. Observations: 23 AIC: 206.6
Df Residuals: 20 BIC: 210.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 93.8821 34.834 2.695 0.014 21.220 166.544
C(dose)[T.1] 51.4769 8.642 5.956 0.000 33.449 69.504
expression -8.4664 7.327 -1.155 0.262 -23.751 6.818
Omnibus: 0.061 Durbin-Watson: 1.939
Prob(Omnibus): 0.970 Jarque-Bera (JB): 0.255
Skew: 0.084 Prob(JB): 0.880
Kurtosis: 2.512 Cond. No. 39.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:01:51 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.087
Model: OLS Adj. R-squared: 0.044
Method: Least Squares F-statistic: 2.012
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.171
Time: 04:01:51 Log-Likelihood: -112.05
No. Observations: 23 AIC: 228.1
Df Residuals: 21 BIC: 230.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 155.7454 54.043 2.882 0.009 43.357 268.134
expression -16.5965 11.701 -1.418 0.171 -40.930 7.737
Omnibus: 5.788 Durbin-Watson: 2.398
Prob(Omnibus): 0.055 Jarque-Bera (JB): 1.813
Skew: 0.181 Prob(JB): 0.404
Kurtosis: 1.673 Cond. No. 37.9

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.111 0.313 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.497
Model: OLS Adj. R-squared: 0.360
Method: Least Squares F-statistic: 3.622
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0488
Time: 04:01:51 Log-Likelihood: -70.147
No. Observations: 15 AIC: 148.3
Df Residuals: 11 BIC: 151.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 145.3979 105.617 1.377 0.196 -87.064 377.860
C(dose)[T.1] 23.5828 129.330 0.182 0.859 -261.070 308.236
expression -16.4934 22.210 -0.743 0.473 -65.377 32.390
expression:C(dose)[T.1] 4.9513 27.540 0.180 0.861 -55.663 65.566
Omnibus: 4.819 Durbin-Watson: 0.686
Prob(Omnibus): 0.090 Jarque-Bera (JB): 3.016
Skew: -1.098 Prob(JB): 0.221
Kurtosis: 3.044 Cond. No. 114.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.495
Model: OLS Adj. R-squared: 0.411
Method: Least Squares F-statistic: 5.893
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0165
Time: 04:01:51 Log-Likelihood: -70.169
No. Observations: 15 AIC: 146.3
Df Residuals: 12 BIC: 148.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 130.1749 60.533 2.150 0.053 -1.714 262.064
C(dose)[T.1] 46.6583 15.249 3.060 0.010 13.433 79.883
expression -13.2731 12.592 -1.054 0.313 -40.708 14.162
Omnibus: 5.218 Durbin-Watson: 0.674
Prob(Omnibus): 0.074 Jarque-Bera (JB): 3.269
Skew: -1.142 Prob(JB): 0.195
Kurtosis: 3.103 Cond. No. 39.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:01:51 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.102
Model: OLS Adj. R-squared: 0.033
Method: Least Squares F-statistic: 1.475
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.246
Time: 04:01:51 Log-Likelihood: -74.494
No. Observations: 15 AIC: 153.0
Df Residuals: 13 BIC: 154.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 183.1975 74.348 2.464 0.028 22.579 343.816
expression -19.3566 15.939 -1.214 0.246 -53.790 15.077
Omnibus: 1.813 Durbin-Watson: 1.741
Prob(Omnibus): 0.404 Jarque-Bera (JB): 0.910
Skew: -0.049 Prob(JB): 0.635
Kurtosis: 1.798 Cond. No. 37.6