AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.006 | 0.938 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.662 |
Model: | OLS | Adj. R-squared: | 0.609 |
Method: | Least Squares | F-statistic: | 12.40 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000101 |
Time: | 04:56:49 | Log-Likelihood: | -100.63 |
No. Observations: | 23 | AIC: | 209.3 |
Df Residuals: | 19 | BIC: | 213.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 24.2911 | 47.572 | 0.511 | 0.616 | -75.278 123.860 |
C(dose)[T.1] | 102.9008 | 59.266 | 1.736 | 0.099 | -21.144 226.946 |
expression | 6.3250 | 9.974 | 0.634 | 0.534 | -14.551 27.201 |
expression:C(dose)[T.1] | -10.4895 | 12.401 | -0.846 | 0.408 | -36.446 15.467 |
Omnibus: | 0.199 | Durbin-Watson: | 1.925 |
Prob(Omnibus): | 0.905 | Jarque-Bera (JB): | 0.405 |
Skew: | 0.038 | Prob(JB): | 0.817 |
Kurtosis: | 2.355 | Cond. No. | 92.8 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 04:56:49 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 56.3862 | 28.488 | 1.979 | 0.062 | -3.039 115.811 |
C(dose)[T.1] | 53.3314 | 8.769 | 6.082 | 0.000 | 35.040 71.623 |
expression | -0.4604 | 5.885 | -0.078 | 0.938 | -12.736 11.815 |
Omnibus: | 0.283 | Durbin-Watson: | 1.881 |
Prob(Omnibus): | 0.868 | Jarque-Bera (JB): | 0.461 |
Skew: | 0.061 | Prob(JB): | 0.794 |
Kurtosis: | 2.317 | Cond. No. | 32.6 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:56:49 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.047 |
Method: | Least Squares | F-statistic: | 0.006120 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.938 |
Time: | 04:56:49 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 83.2999 | 46.360 | 1.797 | 0.087 | -13.112 179.712 |
expression | -0.7584 | 9.694 | -0.078 | 0.938 | -20.918 19.401 |
Omnibus: | 3.278 | Durbin-Watson: | 2.495 |
Prob(Omnibus): | 0.194 | Jarque-Bera (JB): | 1.551 |
Skew: | 0.281 | Prob(JB): | 0.461 |
Kurtosis: | 1.858 | Cond. No. | 32.0 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.408 | 0.535 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.564 |
Method: | Least Squares | F-statistic: | 7.026 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00660 |
Time: | 04:56:49 | Log-Likelihood: | -67.273 |
No. Observations: | 15 | AIC: | 142.5 |
Df Residuals: | 11 | BIC: | 145.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 256.1774 | 166.237 | 1.541 | 0.152 | -109.708 622.063 |
C(dose)[T.1] | -493.2189 | 225.669 | -2.186 | 0.051 | -989.913 3.476 |
expression | -25.2715 | 22.221 | -1.137 | 0.280 | -74.180 23.637 |
expression:C(dose)[T.1] | 80.0745 | 32.422 | 2.470 | 0.031 | 8.715 151.434 |
Omnibus: | 0.466 | Durbin-Watson: | 1.674 |
Prob(Omnibus): | 0.792 | Jarque-Bera (JB): | 0.528 |
Skew: | 0.047 | Prob(JB): | 0.768 |
Kurtosis: | 2.086 | Cond. No. | 325. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.467 |
Model: | OLS | Adj. R-squared: | 0.378 |
Method: | Least Squares | F-statistic: | 5.255 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0230 |
Time: | 04:56:49 | Log-Likelihood: | -70.582 |
No. Observations: | 15 | AIC: | 147.2 |
Df Residuals: | 12 | BIC: | 149.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -24.7613 | 144.710 | -0.171 | 0.867 | -340.057 290.534 |
C(dose)[T.1] | 61.7302 | 24.986 | 2.471 | 0.029 | 7.291 116.170 |
expression | 12.3432 | 19.316 | 0.639 | 0.535 | -29.743 54.429 |
Omnibus: | 1.480 | Durbin-Watson: | 0.838 |
Prob(Omnibus): | 0.477 | Jarque-Bera (JB): | 1.198 |
Skew: | -0.600 | Prob(JB): | 0.549 |
Kurtosis: | 2.312 | Cond. No. | 135. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:56:49 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.196 |
Model: | OLS | Adj. R-squared: | 0.134 |
Method: | Least Squares | F-statistic: | 3.164 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0986 |
Time: | 04:56:49 | Log-Likelihood: | -73.666 |
No. Observations: | 15 | AIC: | 151.3 |
Df Residuals: | 13 | BIC: | 152.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 267.6711 | 98.243 | 2.725 | 0.017 | 55.430 479.912 |
expression | -25.1187 | 14.121 | -1.779 | 0.099 | -55.625 5.388 |
Omnibus: | 0.284 | Durbin-Watson: | 1.202 |
Prob(Omnibus): | 0.868 | Jarque-Bera (JB): | 0.440 |
Skew: | -0.208 | Prob(JB): | 0.802 |
Kurtosis: | 2.271 | Cond. No. | 76.5 |