AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.375 0.547 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.602
Method: Least Squares F-statistic: 12.10
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000117
Time: 03:33:28 Log-Likelihood: -100.82
No. Observations: 23 AIC: 209.6
Df Residuals: 19 BIC: 214.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 91.7046 153.522 0.597 0.557 -229.620 413.029
C(dose)[T.1] 108.5730 219.476 0.495 0.626 -350.796 567.942
expression -4.5500 18.614 -0.244 0.810 -43.510 34.410
expression:C(dose)[T.1] -5.8689 25.623 -0.229 0.821 -59.498 47.760
Omnibus: 0.393 Durbin-Watson: 1.762
Prob(Omnibus): 0.822 Jarque-Bera (JB): 0.529
Skew: -0.091 Prob(JB): 0.768
Kurtosis: 2.280 Cond. No. 563.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 19.03
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.35e-05
Time: 03:33:28 Log-Likelihood: -100.85
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 117.2300 103.062 1.137 0.269 -97.753 332.214
C(dose)[T.1] 58.3803 11.970 4.877 0.000 33.411 83.349
expression -7.6475 12.485 -0.613 0.547 -33.691 18.396
Omnibus: 0.401 Durbin-Watson: 1.779
Prob(Omnibus): 0.818 Jarque-Bera (JB): 0.535
Skew: -0.100 Prob(JB): 0.765
Kurtosis: 2.280 Cond. No. 207.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:33:28 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.246
Model: OLS Adj. R-squared: 0.210
Method: Least Squares F-statistic: 6.844
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0161
Time: 03:33:28 Log-Likelihood: -109.86
No. Observations: 23 AIC: 223.7
Df Residuals: 21 BIC: 226.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -213.2102 112.144 -1.901 0.071 -446.426 20.006
expression 34.2355 13.086 2.616 0.016 7.021 61.450
Omnibus: 2.370 Durbin-Watson: 2.450
Prob(Omnibus): 0.306 Jarque-Bera (JB): 1.713
Skew: 0.483 Prob(JB): 0.425
Kurtosis: 2.075 Cond. No. 155.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.845 0.074 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.585
Model: OLS Adj. R-squared: 0.472
Method: Least Squares F-statistic: 5.172
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0180
Time: 03:33:28 Log-Likelihood: -68.701
No. Observations: 15 AIC: 145.4
Df Residuals: 11 BIC: 148.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -109.8562 177.295 -0.620 0.548 -500.081 280.368
C(dose)[T.1] -20.7281 234.349 -0.088 0.931 -536.528 495.072
expression 23.8280 23.788 1.002 0.338 -28.530 76.186
expression:C(dose)[T.1] 8.1413 30.937 0.263 0.797 -59.950 76.232
Omnibus: 1.060 Durbin-Watson: 1.417
Prob(Omnibus): 0.589 Jarque-Bera (JB): 0.260
Skew: 0.318 Prob(JB): 0.878
Kurtosis: 3.103 Cond. No. 353.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.583
Model: OLS Adj. R-squared: 0.513
Method: Least Squares F-statistic: 8.372
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00529
Time: 03:33:28 Log-Likelihood: -68.748
No. Observations: 15 AIC: 143.5
Df Residuals: 12 BIC: 145.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -145.6707 109.136 -1.335 0.207 -383.458 92.117
C(dose)[T.1] 40.8182 14.348 2.845 0.015 9.556 72.081
expression 28.6417 14.607 1.961 0.074 -3.184 60.467
Omnibus: 0.568 Durbin-Watson: 1.353
Prob(Omnibus): 0.753 Jarque-Bera (JB): 0.118
Skew: 0.215 Prob(JB): 0.943
Kurtosis: 2.932 Cond. No. 124.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:33:28 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.301
Model: OLS Adj. R-squared: 0.247
Method: Least Squares F-statistic: 5.598
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0342
Time: 03:33:28 Log-Likelihood: -72.614
No. Observations: 15 AIC: 149.2
Df Residuals: 13 BIC: 150.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -217.8958 131.958 -1.651 0.123 -502.974 67.182
expression 41.0156 17.336 2.366 0.034 3.564 78.467
Omnibus: 3.408 Durbin-Watson: 2.091
Prob(Omnibus): 0.182 Jarque-Bera (JB): 1.507
Skew: 0.745 Prob(JB): 0.471
Kurtosis: 3.438 Cond. No. 120.