AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.004 | 0.947 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.667 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 12.66 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.89e-05 |
Time: | 05:00:17 | Log-Likelihood: | -100.48 |
No. Observations: | 23 | AIC: | 209.0 |
Df Residuals: | 19 | BIC: | 213.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 99.1861 | 55.830 | 1.777 | 0.092 | -17.667 216.039 |
C(dose)[T.1] | -20.8603 | 75.380 | -0.277 | 0.785 | -178.632 136.912 |
expression | -8.1986 | 10.117 | -0.810 | 0.428 | -29.373 12.976 |
expression:C(dose)[T.1] | 13.0505 | 13.114 | 0.995 | 0.332 | -14.396 40.497 |
Omnibus: | 0.366 | Durbin-Watson: | 2.088 |
Prob(Omnibus): | 0.833 | Jarque-Bera (JB): | 0.508 |
Skew: | 0.008 | Prob(JB): | 0.776 |
Kurtosis: | 2.272 | Cond. No. | 139. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 05:00:17 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 56.5765 | 35.822 | 1.579 | 0.130 | -18.146 131.299 |
C(dose)[T.1] | 53.5686 | 9.424 | 5.684 | 0.000 | 33.911 73.226 |
expression | -0.4317 | 6.435 | -0.067 | 0.947 | -13.856 12.992 |
Omnibus: | 0.290 | Durbin-Watson: | 1.910 |
Prob(Omnibus): | 0.865 | Jarque-Bera (JB): | 0.466 |
Skew: | 0.067 | Prob(JB): | 0.792 |
Kurtosis: | 2.316 | Cond. No. | 49.1 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:00:17 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.082 |
Model: | OLS | Adj. R-squared: | 0.039 |
Method: | Least Squares | F-statistic: | 1.882 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.185 |
Time: | 05:00:17 | Log-Likelihood: | -112.12 |
No. Observations: | 23 | AIC: | 228.2 |
Df Residuals: | 21 | BIC: | 230.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 5.2539 | 54.713 | 0.096 | 0.924 | -108.528 119.035 |
expression | 12.9670 | 9.451 | 1.372 | 0.185 | -6.688 32.622 |
Omnibus: | 3.083 | Durbin-Watson: | 2.210 |
Prob(Omnibus): | 0.214 | Jarque-Bera (JB): | 1.362 |
Skew: | 0.156 | Prob(JB): | 0.506 |
Kurtosis: | 1.849 | Cond. No. | 47.2 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.159 | 0.303 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.554 |
Model: | OLS | Adj. R-squared: | 0.432 |
Method: | Least Squares | F-statistic: | 4.554 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0262 |
Time: | 05:00:17 | Log-Likelihood: | -69.245 |
No. Observations: | 15 | AIC: | 146.5 |
Df Residuals: | 11 | BIC: | 149.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 234.6339 | 104.371 | 2.248 | 0.046 | 4.914 464.353 |
C(dose)[T.1] | -118.0841 | 144.111 | -0.819 | 0.430 | -435.271 199.103 |
expression | -24.4528 | 15.182 | -1.611 | 0.136 | -57.868 8.962 |
expression:C(dose)[T.1] | 24.4635 | 20.699 | 1.182 | 0.262 | -21.095 70.022 |
Omnibus: | 3.578 | Durbin-Watson: | 1.564 |
Prob(Omnibus): | 0.167 | Jarque-Bera (JB): | 1.882 |
Skew: | -0.862 | Prob(JB): | 0.390 |
Kurtosis: | 3.189 | Cond. No. | 188. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.497 |
Model: | OLS | Adj. R-squared: | 0.414 |
Method: | Least Squares | F-statistic: | 5.936 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0161 |
Time: | 05:00:17 | Log-Likelihood: | -70.141 |
No. Observations: | 15 | AIC: | 146.3 |
Df Residuals: | 12 | BIC: | 148.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 144.6455 | 72.557 | 1.994 | 0.069 | -13.442 302.733 |
C(dose)[T.1] | 51.3223 | 15.160 | 3.385 | 0.005 | 18.292 84.352 |
expression | -11.2925 | 10.489 | -1.077 | 0.303 | -34.146 11.561 |
Omnibus: | 9.935 | Durbin-Watson: | 0.983 |
Prob(Omnibus): | 0.007 | Jarque-Bera (JB): | 6.155 |
Skew: | -1.381 | Prob(JB): | 0.0461 |
Kurtosis: | 4.490 | Cond. No. | 69.1 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:00:17 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.017 |
Model: | OLS | Adj. R-squared: | -0.058 |
Method: | Least Squares | F-statistic: | 0.2278 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.641 |
Time: | 05:00:17 | Log-Likelihood: | -75.170 |
No. Observations: | 15 | AIC: | 154.3 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 139.9267 | 97.455 | 1.436 | 0.175 | -70.611 350.465 |
expression | -6.6674 | 13.971 | -0.477 | 0.641 | -36.849 23.514 |
Omnibus: | 1.613 | Durbin-Watson: | 1.803 |
Prob(Omnibus): | 0.446 | Jarque-Bera (JB): | 0.878 |
Skew: | 0.102 | Prob(JB): | 0.645 |
Kurtosis: | 1.832 | Cond. No. | 68.9 |