AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.000 1.000 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.594
Method: Least Squares F-statistic: 11.72
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000143
Time: 04:54:54 Log-Likelihood: -101.06
No. Observations: 23 AIC: 210.1
Df Residuals: 19 BIC: 214.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.9518 38.486 1.428 0.170 -25.600 135.503
C(dose)[T.1] 48.7646 93.927 0.519 0.610 -147.826 245.355
expression -0.1725 8.810 -0.020 0.985 -18.612 18.267
expression:C(dose)[T.1] 1.0520 21.511 0.049 0.962 -43.972 46.076
Omnibus: 0.375 Durbin-Watson: 1.897
Prob(Omnibus): 0.829 Jarque-Bera (JB): 0.516
Skew: 0.072 Prob(JB): 0.772
Kurtosis: 2.280 Cond. No. 111.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.49
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.83e-05
Time: 04:54:54 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.1911 34.313 1.579 0.130 -17.385 125.767
C(dose)[T.1] 53.3370 8.776 6.077 0.000 35.030 71.644
expression 0.0040 7.834 0.001 1.000 -16.338 16.346
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 36.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:54:54 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.01966
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.890
Time: 04:54:54 Log-Likelihood: -113.09
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 71.8887 56.296 1.277 0.216 -45.184 188.962
expression 1.8075 12.890 0.140 0.890 -25.000 28.615
Omnibus: 3.419 Durbin-Watson: 2.494
Prob(Omnibus): 0.181 Jarque-Bera (JB): 1.617
Skew: 0.304 Prob(JB): 0.446
Kurtosis: 1.852 Cond. No. 35.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.000 0.985 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.470
Model: OLS Adj. R-squared: 0.326
Method: Least Squares F-statistic: 3.254
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0636
Time: 04:54:54 Log-Likelihood: -70.535
No. Observations: 15 AIC: 149.1
Df Residuals: 11 BIC: 151.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 100.4198 77.261 1.300 0.220 -69.630 270.469
C(dose)[T.1] -30.7925 120.958 -0.255 0.804 -297.020 235.435
expression -5.5518 12.850 -0.432 0.674 -33.834 22.730
expression:C(dose)[T.1] 13.6815 20.510 0.667 0.518 -31.461 58.824
Omnibus: 2.314 Durbin-Watson: 0.808
Prob(Omnibus): 0.314 Jarque-Bera (JB): 1.686
Skew: -0.780 Prob(JB): 0.430
Kurtosis: 2.489 Cond. No. 116.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.885
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0280
Time: 04:54:55 Log-Likelihood: -70.833
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 68.5083 59.249 1.156 0.270 -60.583 197.600
C(dose)[T.1] 49.1671 15.818 3.108 0.009 14.702 83.633
expression -0.1817 9.781 -0.019 0.985 -21.493 21.129
Omnibus: 2.756 Durbin-Watson: 0.811
Prob(Omnibus): 0.252 Jarque-Bera (JB): 1.892
Skew: -0.850 Prob(JB): 0.388
Kurtosis: 2.627 Cond. No. 46.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:54:55 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.005
Model: OLS Adj. R-squared: -0.072
Method: Least Squares F-statistic: 0.06560
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.802
Time: 04:54:55 Log-Likelihood: -75.262
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 112.5099 74.264 1.515 0.154 -47.928 272.948
expression -3.2176 12.562 -0.256 0.802 -30.357 23.922
Omnibus: 0.514 Durbin-Watson: 1.665
Prob(Omnibus): 0.773 Jarque-Bera (JB): 0.546
Skew: 0.038 Prob(JB): 0.761
Kurtosis: 2.068 Cond. No. 44.5