AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.539 0.471 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.604
Method: Least Squares F-statistic: 12.21
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000111
Time: 05:20:28 Log-Likelihood: -100.75
No. Observations: 23 AIC: 209.5
Df Residuals: 19 BIC: 214.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 169.6191 239.392 0.709 0.487 -331.434 670.672
C(dose)[T.1] 25.2965 289.468 0.087 0.931 -580.568 631.161
expression -13.5182 28.031 -0.482 0.635 -72.188 45.152
expression:C(dose)[T.1] 3.1465 34.035 0.092 0.927 -68.089 74.382
Omnibus: 0.232 Durbin-Watson: 2.077
Prob(Omnibus): 0.891 Jarque-Bera (JB): 0.428
Skew: 0.042 Prob(JB): 0.807
Kurtosis: 2.337 Cond. No. 789.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 19.26
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.17e-05
Time: 05:20:28 Log-Likelihood: -100.76
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 151.3974 132.460 1.143 0.267 -124.909 427.703
C(dose)[T.1] 52.0446 8.831 5.893 0.000 33.623 70.466
expression -11.3839 15.499 -0.734 0.471 -43.715 20.947
Omnibus: 0.245 Durbin-Watson: 2.054
Prob(Omnibus): 0.885 Jarque-Bera (JB): 0.436
Skew: 0.036 Prob(JB): 0.804
Kurtosis: 2.329 Cond. No. 264.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:20:28 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.065
Model: OLS Adj. R-squared: 0.020
Method: Least Squares F-statistic: 1.456
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.241
Time: 05:20:28 Log-Likelihood: -112.33
No. Observations: 23 AIC: 228.7
Df Residuals: 21 BIC: 230.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 330.7041 208.125 1.589 0.127 -102.115 763.524
expression -29.5867 24.520 -1.207 0.241 -80.579 21.406
Omnibus: 4.413 Durbin-Watson: 2.405
Prob(Omnibus): 0.110 Jarque-Bera (JB): 1.757
Skew: 0.282 Prob(JB): 0.415
Kurtosis: 1.769 Cond. No. 257.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.198 0.664 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.479
Model: OLS Adj. R-squared: 0.337
Method: Least Squares F-statistic: 3.372
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0583
Time: 05:20:28 Log-Likelihood: -70.409
No. Observations: 15 AIC: 148.8
Df Residuals: 11 BIC: 151.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 97.0713 336.424 0.289 0.778 -643.393 837.536
C(dose)[T.1] -301.7609 525.803 -0.574 0.578 -1459.045 855.523
expression -3.5584 40.361 -0.088 0.931 -92.392 85.275
expression:C(dose)[T.1] 42.8665 63.804 0.672 0.516 -97.565 183.298
Omnibus: 4.604 Durbin-Watson: 0.727
Prob(Omnibus): 0.100 Jarque-Bera (JB): 2.853
Skew: -1.068 Prob(JB): 0.240
Kurtosis: 3.036 Cond. No. 702.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.458
Model: OLS Adj. R-squared: 0.367
Method: Least Squares F-statistic: 5.065
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0254
Time: 05:20:28 Log-Likelihood: -70.710
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -45.8202 254.637 -0.180 0.860 -600.627 508.986
C(dose)[T.1] 51.3197 16.324 3.144 0.008 15.754 86.886
expression 13.5946 30.536 0.445 0.664 -52.939 80.128
Omnibus: 3.836 Durbin-Watson: 0.768
Prob(Omnibus): 0.147 Jarque-Bera (JB): 2.517
Skew: -0.999 Prob(JB): 0.284
Kurtosis: 2.811 Cond. No. 274.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:20:28 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.011
Model: OLS Adj. R-squared: -0.065
Method: Least Squares F-statistic: 0.1456
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.709
Time: 05:20:28 Log-Likelihood: -75.217
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 212.8856 312.654 0.681 0.508 -462.563 888.334
expression -14.4558 37.891 -0.382 0.709 -96.314 67.402
Omnibus: 0.836 Durbin-Watson: 1.546
Prob(Omnibus): 0.658 Jarque-Bera (JB): 0.680
Skew: 0.137 Prob(JB): 0.712
Kurtosis: 1.994 Cond. No. 259.