AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.952 | 0.178 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.695 |
Model: | OLS | Adj. R-squared: | 0.647 |
Method: | Least Squares | F-statistic: | 14.43 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.89e-05 |
Time: | 06:23:24 | Log-Likelihood: | -99.452 |
No. Observations: | 23 | AIC: | 206.9 |
Df Residuals: | 19 | BIC: | 211.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 35.5783 | 352.084 | 0.101 | 0.921 | -701.341 772.498 |
C(dose)[T.1] | -386.9223 | 444.728 | -0.870 | 0.395 | -1317.750 543.905 |
expression | 1.9515 | 36.875 | 0.053 | 0.958 | -75.230 79.133 |
expression:C(dose)[T.1] | 43.6895 | 45.713 | 0.956 | 0.351 | -51.989 139.368 |
Omnibus: | 0.023 | Durbin-Watson: | 1.939 |
Prob(Omnibus): | 0.989 | Jarque-Bera (JB): | 0.120 |
Skew: | -0.049 | Prob(JB): | 0.942 |
Kurtosis: | 2.660 | Cond. No. | 1.46e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.680 |
Model: | OLS | Adj. R-squared: | 0.648 |
Method: | Least Squares | F-statistic: | 21.28 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.12e-05 |
Time: | 06:23:24 | Log-Likelihood: | -99.992 |
No. Observations: | 23 | AIC: | 206.0 |
Df Residuals: | 20 | BIC: | 209.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -235.8287 | 207.683 | -1.136 | 0.270 | -669.048 197.390 |
C(dose)[T.1] | 37.9127 | 13.855 | 2.736 | 0.013 | 9.011 66.814 |
expression | 30.3811 | 21.746 | 1.397 | 0.178 | -14.981 75.743 |
Omnibus: | 0.013 | Durbin-Watson: | 1.880 |
Prob(Omnibus): | 0.994 | Jarque-Bera (JB): | 0.118 |
Skew: | -0.030 | Prob(JB): | 0.943 |
Kurtosis: | 2.654 | Cond. No. | 493. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 06:23:24 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.561 |
Model: | OLS | Adj. R-squared: | 0.540 |
Method: | Least Squares | F-statistic: | 26.79 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.96e-05 |
Time: | 06:23:25 | Log-Likelihood: | -103.65 |
No. Observations: | 23 | AIC: | 211.3 |
Df Residuals: | 21 | BIC: | 213.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -681.8828 | 147.228 | -4.631 | 0.000 | -988.060 -375.706 |
expression | 77.7981 | 15.032 | 5.176 | 0.000 | 46.538 109.058 |
Omnibus: | 1.153 | Durbin-Watson: | 2.172 |
Prob(Omnibus): | 0.562 | Jarque-Bera (JB): | 0.835 |
Skew: | 0.061 | Prob(JB): | 0.659 |
Kurtosis: | 2.075 | Cond. No. | 305. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.022 | 0.884 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.629 |
Model: | OLS | Adj. R-squared: | 0.527 |
Method: | Least Squares | F-statistic: | 6.205 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0101 |
Time: | 06:23:25 | Log-Likelihood: | -67.872 |
No. Observations: | 15 | AIC: | 143.7 |
Df Residuals: | 11 | BIC: | 146.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -730.7689 | 433.674 | -1.685 | 0.120 | -1685.280 223.742 |
C(dose)[T.1] | 1220.4366 | 509.993 | 2.393 | 0.036 | 97.950 2342.923 |
expression | 86.9582 | 47.234 | 1.841 | 0.093 | -17.002 190.919 |
expression:C(dose)[T.1] | -129.2293 | 56.166 | -2.301 | 0.042 | -252.851 -5.608 |
Omnibus: | 2.524 | Durbin-Watson: | 1.863 |
Prob(Omnibus): | 0.283 | Jarque-Bera (JB): | 0.804 |
Skew: | -0.490 | Prob(JB): | 0.669 |
Kurtosis: | 3.571 | Cond. No. | 1.00e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 4.905 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0277 |
Time: | 06:23:25 | Log-Likelihood: | -70.819 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 108.1322 | 273.610 | 0.395 | 0.700 | -488.012 704.277 |
C(dose)[T.1] | 47.6262 | 18.934 | 2.515 | 0.027 | 6.373 88.880 |
expression | -4.4344 | 29.782 | -0.149 | 0.884 | -69.323 60.454 |
Omnibus: | 2.632 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.268 | Jarque-Bera (JB): | 1.807 |
Skew: | -0.829 | Prob(JB): | 0.405 |
Kurtosis: | 2.621 | Cond. No. | 318. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 06:23:25 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.160 |
Model: | OLS | Adj. R-squared: | 0.095 |
Method: | Least Squares | F-statistic: | 2.470 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.140 |
Time: | 06:23:25 | Log-Likelihood: | -73.995 |
No. Observations: | 15 | AIC: | 152.0 |
Df Residuals: | 13 | BIC: | 153.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 508.6462 | 264.194 | 1.925 | 0.076 | -62.110 1079.402 |
expression | -46.1589 | 29.368 | -1.572 | 0.140 | -109.606 17.288 |
Omnibus: | 1.319 | Durbin-Watson: | 1.489 |
Prob(Omnibus): | 0.517 | Jarque-Bera (JB): | 0.491 |
Skew: | -0.443 | Prob(JB): | 0.782 |
Kurtosis: | 3.032 | Cond. No. | 258. |