AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.001 | 0.970 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.693 |
Model: | OLS | Adj. R-squared: | 0.644 |
Method: | Least Squares | F-statistic: | 14.28 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 4.15e-05 |
Time: | 22:49:24 | Log-Likelihood: | -99.534 |
No. Observations: | 23 | AIC: | 207.1 |
Df Residuals: | 19 | BIC: | 211.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -146.4572 | 246.683 | -0.594 | 0.560 | -662.771 369.857 |
C(dose)[T.1] | 937.2884 | 538.313 | 1.741 | 0.098 | -189.413 2063.990 |
expression | 20.5704 | 25.281 | 0.814 | 0.426 | -32.343 73.483 |
expression:C(dose)[T.1] | -87.6511 | 53.340 | -1.643 | 0.117 | -199.294 23.991 |
Omnibus: | 1.514 | Durbin-Watson: | 1.923 |
Prob(Omnibus): | 0.469 | Jarque-Bera (JB): | 0.982 |
Skew: | 0.143 | Prob(JB): | 0.612 |
Kurtosis: | 2.029 | Cond. No. | 1.51e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.83e-05 |
Time: | 22:49:24 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 45.6108 | 226.280 | 0.202 | 0.842 | -426.402 517.623 |
C(dose)[T.1] | 52.9573 | 13.295 | 3.983 | 0.001 | 25.223 80.691 |
expression | 0.8813 | 23.188 | 0.038 | 0.970 | -47.488 49.250 |
Omnibus: | 0.304 | Durbin-Watson: | 1.906 |
Prob(Omnibus): | 0.859 | Jarque-Bera (JB): | 0.474 |
Skew: | 0.054 | Prob(JB): | 0.789 |
Kurtosis: | 2.305 | Cond. No. | 521. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:49:24 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.371 |
Model: | OLS | Adj. R-squared: | 0.341 |
Method: | Least Squares | F-statistic: | 12.37 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00205 |
Time: | 22:49:24 | Log-Likelihood: | -107.78 |
No. Observations: | 23 | AIC: | 219.6 |
Df Residuals: | 21 | BIC: | 221.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -620.5680 | 199.182 | -3.116 | 0.005 | -1034.790 -206.346 |
expression | 70.3015 | 19.988 | 3.517 | 0.002 | 28.735 111.868 |
Omnibus: | 1.037 | Durbin-Watson: | 2.627 |
Prob(Omnibus): | 0.595 | Jarque-Bera (JB): | 0.907 |
Skew: | 0.258 | Prob(JB): | 0.636 |
Kurtosis: | 2.176 | Cond. No. | 350. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.469 | 0.506 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.521 |
Model: | OLS | Adj. R-squared: | 0.391 |
Method: | Least Squares | F-statistic: | 3.995 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0378 |
Time: | 22:49:24 | Log-Likelihood: | -69.773 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 11 | BIC: | 150.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -176.4330 | 198.719 | -0.888 | 0.394 | -613.810 260.943 |
C(dose)[T.1] | 382.3998 | 299.952 | 1.275 | 0.229 | -277.791 1042.591 |
expression | 28.7966 | 23.429 | 1.229 | 0.245 | -22.769 80.363 |
expression:C(dose)[T.1] | -40.0112 | 36.641 | -1.092 | 0.298 | -120.659 40.636 |
Omnibus: | 1.489 | Durbin-Watson: | 0.969 |
Prob(Omnibus): | 0.475 | Jarque-Bera (JB): | 0.934 |
Skew: | -0.593 | Prob(JB): | 0.627 |
Kurtosis: | 2.702 | Cond. No. | 417. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.470 |
Model: | OLS | Adj. R-squared: | 0.381 |
Method: | Least Squares | F-statistic: | 5.310 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0223 |
Time: | 22:49:24 | Log-Likelihood: | -70.545 |
No. Observations: | 15 | AIC: | 147.1 |
Df Residuals: | 12 | BIC: | 149.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -37.9066 | 154.178 | -0.246 | 0.810 | -373.831 298.018 |
C(dose)[T.1] | 55.4385 | 17.929 | 3.092 | 0.009 | 16.375 94.502 |
expression | 12.4386 | 18.157 | 0.685 | 0.506 | -27.123 52.000 |
Omnibus: | 3.113 | Durbin-Watson: | 0.711 |
Prob(Omnibus): | 0.211 | Jarque-Bera (JB): | 1.973 |
Skew: | -0.883 | Prob(JB): | 0.373 |
Kurtosis: | 2.805 | Cond. No. | 167. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:49:24 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.047 |
Model: | OLS | Adj. R-squared: | -0.026 |
Method: | Least Squares | F-statistic: | 0.6388 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.438 |
Time: | 22:49:24 | Log-Likelihood: | -74.940 |
No. Observations: | 15 | AIC: | 153.9 |
Df Residuals: | 13 | BIC: | 155.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 225.6695 | 165.452 | 1.364 | 0.196 | -131.768 583.107 |
expression | -16.0964 | 20.139 | -0.799 | 0.438 | -59.604 27.411 |
Omnibus: | 0.237 | Durbin-Watson: | 1.484 |
Prob(Omnibus): | 0.888 | Jarque-Bera (JB): | 0.173 |
Skew: | -0.200 | Prob(JB): | 0.917 |
Kurtosis: | 2.657 | Cond. No. | 139. |