AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.676 | 0.118 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.691 |
Model: | OLS | Adj. R-squared: | 0.643 |
Method: | Least Squares | F-statistic: | 14.18 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 4.34e-05 |
Time: | 05:01:28 | Log-Likelihood: | -99.590 |
No. Observations: | 23 | AIC: | 207.2 |
Df Residuals: | 19 | BIC: | 211.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 183.3973 | 96.192 | 1.907 | 0.072 | -17.934 384.729 |
C(dose)[T.1] | 14.5648 | 140.317 | 0.104 | 0.918 | -279.122 308.251 |
expression | -19.4192 | 14.432 | -1.346 | 0.194 | -49.627 10.788 |
expression:C(dose)[T.1] | 4.7941 | 21.917 | 0.219 | 0.829 | -41.079 50.668 |
Omnibus: | 2.178 | Durbin-Watson: | 2.012 |
Prob(Omnibus): | 0.336 | Jarque-Bera (JB): | 1.109 |
Skew: | -0.032 | Prob(JB): | 0.574 |
Kurtosis: | 1.926 | Cond. No. | 277. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.690 |
Model: | OLS | Adj. R-squared: | 0.660 |
Method: | Least Squares | F-statistic: | 22.31 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.07e-06 |
Time: | 05:01:28 | Log-Likelihood: | -99.619 |
No. Observations: | 23 | AIC: | 205.2 |
Df Residuals: | 20 | BIC: | 208.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 169.5679 | 70.748 | 2.397 | 0.026 | 21.991 317.145 |
C(dose)[T.1] | 45.1808 | 9.628 | 4.693 | 0.000 | 25.098 65.264 |
expression | -17.3404 | 10.600 | -1.636 | 0.118 | -39.452 4.771 |
Omnibus: | 2.146 | Durbin-Watson: | 2.023 |
Prob(Omnibus): | 0.342 | Jarque-Bera (JB): | 1.101 |
Skew: | -0.033 | Prob(JB): | 0.577 |
Kurtosis: | 1.930 | Cond. No. | 114. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:01:28 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.350 |
Model: | OLS | Adj. R-squared: | 0.319 |
Method: | Least Squares | F-statistic: | 11.29 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00296 |
Time: | 05:01:28 | Log-Likelihood: | -108.16 |
No. Observations: | 23 | AIC: | 220.3 |
Df Residuals: | 21 | BIC: | 222.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 356.7567 | 82.655 | 4.316 | 0.000 | 184.866 528.648 |
expression | -43.1009 | 12.827 | -3.360 | 0.003 | -69.777 -16.425 |
Omnibus: | 1.606 | Durbin-Watson: | 2.385 |
Prob(Omnibus): | 0.448 | Jarque-Bera (JB): | 1.044 |
Skew: | 0.191 | Prob(JB): | 0.593 |
Kurtosis: | 2.028 | Cond. No. | 93.7 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.794 | 0.205 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.716 |
Model: | OLS | Adj. R-squared: | 0.638 |
Method: | Least Squares | F-statistic: | 9.235 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00243 |
Time: | 05:01:28 | Log-Likelihood: | -65.864 |
No. Observations: | 15 | AIC: | 139.7 |
Df Residuals: | 11 | BIC: | 142.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 180.5040 | 130.818 | 1.380 | 0.195 | -107.424 468.432 |
C(dose)[T.1] | -444.3667 | 179.673 | -2.473 | 0.031 | -839.824 -48.909 |
expression | -14.9944 | 17.309 | -0.866 | 0.405 | -53.092 23.103 |
expression:C(dose)[T.1] | 65.2450 | 23.729 | 2.750 | 0.019 | 13.018 117.472 |
Omnibus: | 0.281 | Durbin-Watson: | 1.286 |
Prob(Omnibus): | 0.869 | Jarque-Bera (JB): | 0.445 |
Skew: | 0.142 | Prob(JB): | 0.800 |
Kurtosis: | 2.205 | Cond. No. | 317. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.520 |
Model: | OLS | Adj. R-squared: | 0.441 |
Method: | Least Squares | F-statistic: | 6.512 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0122 |
Time: | 05:01:28 | Log-Likelihood: | -69.788 |
No. Observations: | 15 | AIC: | 145.6 |
Df Residuals: | 12 | BIC: | 147.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -81.3117 | 111.559 | -0.729 | 0.480 | -324.379 161.755 |
C(dose)[T.1] | 48.5922 | 14.687 | 3.308 | 0.006 | 16.591 80.593 |
expression | 19.7238 | 14.725 | 1.339 | 0.205 | -12.359 51.807 |
Omnibus: | 2.429 | Durbin-Watson: | 1.027 |
Prob(Omnibus): | 0.297 | Jarque-Bera (JB): | 1.319 |
Skew: | -0.726 | Prob(JB): | 0.517 |
Kurtosis: | 2.951 | Cond. No. | 118. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:01:28 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.083 |
Model: | OLS | Adj. R-squared: | 0.013 |
Method: | Least Squares | F-statistic: | 1.178 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.298 |
Time: | 05:01:28 | Log-Likelihood: | -74.650 |
No. Observations: | 15 | AIC: | 153.3 |
Df Residuals: | 13 | BIC: | 154.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -66.7031 | 148.097 | -0.450 | 0.660 | -386.647 253.241 |
expression | 21.2199 | 19.554 | 1.085 | 0.298 | -21.023 63.463 |
Omnibus: | 1.015 | Durbin-Watson: | 1.733 |
Prob(Omnibus): | 0.602 | Jarque-Bera (JB): | 0.410 |
Skew: | -0.403 | Prob(JB): | 0.814 |
Kurtosis: | 2.918 | Cond. No. | 117. |