AIM Score vs. Gene Expression 
		Full X range:
		
		 
			
		
		Auto X range:
		
		 
		
		
		
		Group Comparisons: Boxplots
		
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  5.281  |   0.032  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.734 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.692 | 
  | Method: |              Least Squares |     F-statistic:        |     17.44 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  1.10e-05 | 
  | Time: |                  10:02:13 |        Log-Likelihood:     |   -97.894 | 
  | No. Observations: |           23 |         AIC:                |     203.8 | 
  | Df Residuals: |               19 |         BIC:                |     208.3 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                  -42.2927 |    108.389 |     -0.390 |   0.701 |   -269.154   184.569 | 
  | C(dose)[T.1] |               -61.5105 |    142.533 |     -0.432 |   0.671 |   -359.836   236.815 | 
  | expression |                  12.9230 |     14.497 |      0.891 |   0.384 |    -17.419    43.265 | 
  | expression:C(dose)[T.1] |     17.6300 |     19.711 |      0.894 |   0.382 |    -23.626    58.886 | 
  | Omnibus: |         4.209 |    Durbin-Watson:      |     1.718 | 
  | Prob(Omnibus): |   0.122 |    Jarque-Bera (JB):   |     1.553 | 
  | Skew: |            0.147 |    Prob(JB):           |     0.460 | 
  | Kurtosis: |        1.761 |    Cond. No.           |      354. | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.722 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.695 | 
  | Method: |              Least Squares |     F-statistic:        |     26.02 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  2.72e-06 | 
  | Time: |                  10:02:13 |        Log-Likelihood:     |   -98.368 | 
  | No. Observations: |           23 |         AIC:                |     202.7 | 
  | Df Residuals: |               20 |         BIC:                |     206.1 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |      -113.5027 |     73.180 |     -1.551 |   0.137 |   -266.154    39.149 | 
  | C(dose)[T.1] |     65.6881 |      9.473 |      6.934 |   0.000 |     45.928    85.448 | 
  | expression |       22.4592 |      9.773 |      2.298 |   0.032 |      2.072    42.846 | 
  | Omnibus: |         5.787 |    Durbin-Watson:      |     1.866 | 
  | Prob(Omnibus): |   0.055 |    Jarque-Bera (JB):   |     1.712 | 
  | Skew: |            0.024 |    Prob(JB):           |     0.425 | 
  | Kurtosis: |        1.664 |    Cond. No.           |      139. | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.649 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.632 | 
  | Method: |              Least Squares |     F-statistic:        |     38.84 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  3.51e-06 | 
  | Time: |                  10:02:13 |        Log-Likelihood:     |   -101.06 | 
  | No. Observations: |           23 |         AIC:                |     206.1 | 
  | Df Residuals: |               21 |         BIC:                |     208.4 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        54.2083 |      5.919 |      9.159 |   0.000 |     41.900    66.517 | 
  | C(dose)[T.1] |     53.3371 |      8.558 |      6.232 |   0.000 |     35.539    71.135 | 
  | Omnibus: |         0.322 |    Durbin-Watson:      |     1.888 | 
  | Prob(Omnibus): |   0.851 |    Jarque-Bera (JB):   |     0.485 | 
  | Skew: |            0.060 |    Prob(JB):           |     0.785 | 
  | Kurtosis: |        2.299 |    Cond. No.           |      2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.055 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.010 | 
  | Method: |              Least Squares |     F-statistic:        |     1.218 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |    0.282 |  
  | Time: |                  10:02:13 |        Log-Likelihood:     |   -112.46 | 
  | No. Observations: |           23 |         AIC:                |     228.9 | 
  | Df Residuals: |               21 |         BIC:                |     231.2 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |     194.9461 |    104.635 |      1.863 |   0.076 |    -22.655   412.547 | 
  | expression |    -15.9943 |     14.491 |     -1.104 |   0.282 |    -46.130    14.142 | 
  | Omnibus: |         2.967 |    Durbin-Watson:      |     2.340 | 
  | Prob(Omnibus): |   0.227 |    Jarque-Bera (JB):   |     1.691 | 
  | Skew: |            0.395 |    Prob(JB):           |     0.429 | 
  | Kurtosis: |        1.932 |    Cond. No.           |      110. | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  0.040  |   0.845  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.451 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.301 | 
  | Method: |              Least Squares |     F-statistic:        |     3.012 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0762 |  
  | Time: |                  10:02:13 |        Log-Likelihood:     |   -70.803 | 
  | No. Observations: |           15 |         AIC:                |     149.6 | 
  | Df Residuals: |               11 |         BIC:                |     152.4 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                   25.5912 |    201.986 |      0.127 |   0.901 |   -418.977   470.159 | 
  | C(dose)[T.1] |                82.3286 |    383.510 |      0.215 |   0.834 |   -761.770   926.428 | 
  | expression |                   5.7595 |     27.757 |      0.207 |   0.839 |    -55.334    66.853 | 
  | expression:C(dose)[T.1] |     -4.5390 |     53.454 |     -0.085 |   0.934 |   -122.191   113.113 | 
  | Omnibus: |         3.030 |    Durbin-Watson:      |     0.790 | 
  | Prob(Omnibus): |   0.220 |    Jarque-Bera (JB):   |     2.062 | 
  | Skew: |           -0.892 |    Prob(JB):           |     0.357 | 
  | Kurtosis: |        2.661 |    Cond. No.           |      416. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.451 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.359 | 
  | Method: |              Least Squares |     F-statistic:        |     4.921 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0275 |  
  | Time: |                  10:02:13 |        Log-Likelihood:     |   -70.808 | 
  | No. Observations: |           15 |         AIC:                |     147.6 | 
  | Df Residuals: |               12 |         BIC:                |     149.7 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        34.4818 |    165.431 |      0.208 |   0.838 |   -325.962   394.925 | 
  | C(dose)[T.1] |     49.7942 |     15.996 |      3.113 |   0.009 |     14.941    84.647 | 
  | expression |        4.5356 |     22.719 |      0.200 |   0.845 |    -44.965    54.037 | 
  | Omnibus: |         2.936 |    Durbin-Watson:      |     0.776 | 
  | Prob(Omnibus): |   0.230 |    Jarque-Bera (JB):   |     2.039 | 
  | Skew: |           -0.882 |    Prob(JB):           |     0.361 | 
  | Kurtosis: |        2.612 |    Cond. No.           |      155. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.449 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.406 | 
  | Method: |              Least Squares |     F-statistic:        |     10.58 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.00629 | 
  | Time: |                  10:02:13 |        Log-Likelihood:     |   -70.833 | 
  | No. Observations: |           15 |         AIC:                |     145.7 | 
  | Df Residuals: |               13 |         BIC:                |     147.1 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        67.4286 |     11.044 |      6.106 |   0.000 |     43.570    91.287 | 
  | C(dose)[T.1] |     49.1964 |     15.122 |      3.253 |   0.006 |     16.527    81.866 | 
  | Omnibus: |         2.713 |    Durbin-Watson:      |     0.810 | 
  | Prob(Omnibus): |   0.258 |    Jarque-Bera (JB):   |     1.868 | 
  | Skew: |           -0.843 |    Prob(JB):           |     0.393 | 
  | Kurtosis: |        2.619 |    Cond. No.           |      2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.007 | 
  | Model: |                    OLS |          Adj. R-squared:     |    -0.069 | 
  | Method: |              Least Squares |     F-statistic:        |   0.09115 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |    0.768 |  
  | Time: |                  10:02:13 |        Log-Likelihood:     |   -75.248 | 
  | No. Observations: |           15 |         AIC:                |     154.5 | 
  | Df Residuals: |               13 |         BIC:                |     155.9 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |     156.2743 |    207.623 |      0.753 |   0.465 |   -292.267   604.816 | 
  | expression |     -8.7031 |     28.827 |     -0.302 |   0.768 |    -70.981    53.575 | 
  | Omnibus: |         0.738 |    Durbin-Watson:      |     1.604 | 
  | Prob(Omnibus): |   0.691 |    Jarque-Bera (JB):   |     0.629 | 
  | Skew: |            0.051 |    Prob(JB):           |     0.730 | 
  | Kurtosis: |        2.002 |    Cond. No.           |      151. |