AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
5.281 0.032 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.734
Model: OLS Adj. R-squared: 0.692
Method: Least Squares F-statistic: 17.44
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.10e-05
Time: 03:52:25 Log-Likelihood: -97.894
No. Observations: 23 AIC: 203.8
Df Residuals: 19 BIC: 208.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -42.2927 108.389 -0.390 0.701 -269.154 184.569
C(dose)[T.1] -61.5105 142.533 -0.432 0.671 -359.836 236.815
expression 12.9230 14.497 0.891 0.384 -17.419 43.265
expression:C(dose)[T.1] 17.6300 19.711 0.894 0.382 -23.626 58.886
Omnibus: 4.209 Durbin-Watson: 1.718
Prob(Omnibus): 0.122 Jarque-Bera (JB): 1.553
Skew: 0.147 Prob(JB): 0.460
Kurtosis: 1.761 Cond. No. 354.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.722
Model: OLS Adj. R-squared: 0.695
Method: Least Squares F-statistic: 26.02
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.72e-06
Time: 03:52:25 Log-Likelihood: -98.368
No. Observations: 23 AIC: 202.7
Df Residuals: 20 BIC: 206.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -113.5027 73.180 -1.551 0.137 -266.154 39.149
C(dose)[T.1] 65.6881 9.473 6.934 0.000 45.928 85.448
expression 22.4592 9.773 2.298 0.032 2.072 42.846
Omnibus: 5.787 Durbin-Watson: 1.866
Prob(Omnibus): 0.055 Jarque-Bera (JB): 1.712
Skew: 0.024 Prob(JB): 0.425
Kurtosis: 1.664 Cond. No. 139.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:52:25 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.055
Model: OLS Adj. R-squared: 0.010
Method: Least Squares F-statistic: 1.218
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.282
Time: 03:52:25 Log-Likelihood: -112.46
No. Observations: 23 AIC: 228.9
Df Residuals: 21 BIC: 231.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 194.9461 104.635 1.863 0.076 -22.655 412.547
expression -15.9943 14.491 -1.104 0.282 -46.130 14.142
Omnibus: 2.967 Durbin-Watson: 2.340
Prob(Omnibus): 0.227 Jarque-Bera (JB): 1.691
Skew: 0.395 Prob(JB): 0.429
Kurtosis: 1.932 Cond. No. 110.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.040 0.845 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.451
Model: OLS Adj. R-squared: 0.301
Method: Least Squares F-statistic: 3.012
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0762
Time: 03:52:25 Log-Likelihood: -70.803
No. Observations: 15 AIC: 149.6
Df Residuals: 11 BIC: 152.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 25.5912 201.986 0.127 0.901 -418.977 470.159
C(dose)[T.1] 82.3286 383.510 0.215 0.834 -761.770 926.428
expression 5.7595 27.757 0.207 0.839 -55.334 66.853
expression:C(dose)[T.1] -4.5390 53.454 -0.085 0.934 -122.191 113.113
Omnibus: 3.030 Durbin-Watson: 0.790
Prob(Omnibus): 0.220 Jarque-Bera (JB): 2.062
Skew: -0.892 Prob(JB): 0.357
Kurtosis: 2.661 Cond. No. 416.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.451
Model: OLS Adj. R-squared: 0.359
Method: Least Squares F-statistic: 4.921
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0275
Time: 03:52:25 Log-Likelihood: -70.808
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 34.4818 165.431 0.208 0.838 -325.962 394.925
C(dose)[T.1] 49.7942 15.996 3.113 0.009 14.941 84.647
expression 4.5356 22.719 0.200 0.845 -44.965 54.037
Omnibus: 2.936 Durbin-Watson: 0.776
Prob(Omnibus): 0.230 Jarque-Bera (JB): 2.039
Skew: -0.882 Prob(JB): 0.361
Kurtosis: 2.612 Cond. No. 155.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:52:25 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.007
Model: OLS Adj. R-squared: -0.069
Method: Least Squares F-statistic: 0.09115
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.768
Time: 03:52:25 Log-Likelihood: -75.248
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 156.2743 207.623 0.753 0.465 -292.267 604.816
expression -8.7031 28.827 -0.302 0.768 -70.981 53.575
Omnibus: 0.738 Durbin-Watson: 1.604
Prob(Omnibus): 0.691 Jarque-Bera (JB): 0.629
Skew: 0.051 Prob(JB): 0.730
Kurtosis: 2.002 Cond. No. 151.