AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.001 | 0.970 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.594 |
Method: | Least Squares | F-statistic: | 11.73 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000141 |
Time: | 03:47:52 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 210.1 |
Df Residuals: | 19 | BIC: | 214.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 123.0927 | 616.546 | 0.200 | 0.844 | -1167.352 1413.538 |
C(dose)[T.1] | -112.7444 | 1134.919 | -0.099 | 0.922 | -2488.157 2262.668 |
expression | -5.7458 | 51.425 | -0.112 | 0.912 | -113.379 101.888 |
expression:C(dose)[T.1] | 13.6881 | 93.308 | 0.147 | 0.885 | -181.607 208.984 |
Omnibus: | 0.381 | Durbin-Watson: | 1.858 |
Prob(Omnibus): | 0.826 | Jarque-Bera (JB): | 0.520 |
Skew: | 0.071 | Prob(JB): | 0.771 |
Kurtosis: | 2.277 | Cond. No. | 3.69e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 03:47:52 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 73.2477 | 501.726 | 0.146 | 0.885 | -973.334 1119.830 |
C(dose)[T.1] | 53.7331 | 13.630 | 3.942 | 0.001 | 25.302 82.164 |
expression | -1.5881 | 41.847 | -0.038 | 0.970 | -88.879 85.703 |
Omnibus: | 0.302 | Durbin-Watson: | 1.876 |
Prob(Omnibus): | 0.860 | Jarque-Bera (JB): | 0.473 |
Skew: | 0.053 | Prob(JB): | 0.789 |
Kurtosis: | 2.306 | Cond. No. | 1.40e+03 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:47:52 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.376 |
Model: | OLS | Adj. R-squared: | 0.347 |
Method: | Least Squares | F-statistic: | 12.67 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00185 |
Time: | 03:47:52 | Log-Likelihood: | -107.67 |
No. Observations: | 23 | AIC: | 219.3 |
Df Residuals: | 21 | BIC: | 221.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -1430.1895 | 424.162 | -3.372 | 0.003 | -2312.283 -548.096 |
expression | 124.7043 | 35.029 | 3.560 | 0.002 | 51.858 197.550 |
Omnibus: | 2.710 | Durbin-Watson: | 2.784 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.295 |
Skew: | 0.165 | Prob(JB): | 0.523 |
Kurtosis: | 1.886 | Cond. No. | 907. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.441 | 0.519 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.585 |
Model: | OLS | Adj. R-squared: | 0.472 |
Method: | Least Squares | F-statistic: | 5.164 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0181 |
Time: | 03:47:52 | Log-Likelihood: | -68.708 |
No. Observations: | 15 | AIC: | 145.4 |
Df Residuals: | 11 | BIC: | 148.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 847.0340 | 894.972 | 0.946 | 0.364 | -1122.787 2816.855 |
C(dose)[T.1] | -2026.5811 | 1179.708 | -1.718 | 0.114 | -4623.101 569.939 |
expression | -66.3252 | 76.135 | -0.871 | 0.402 | -233.897 101.247 |
expression:C(dose)[T.1] | 175.6402 | 99.988 | 1.757 | 0.107 | -44.432 395.712 |
Omnibus: | 2.486 | Durbin-Watson: | 1.012 |
Prob(Omnibus): | 0.289 | Jarque-Bera (JB): | 1.495 |
Skew: | -0.523 | Prob(JB): | 0.473 |
Kurtosis: | 1.860 | Cond. No. | 2.72e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.468 |
Model: | OLS | Adj. R-squared: | 0.380 |
Method: | Least Squares | F-statistic: | 5.285 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0226 |
Time: | 03:47:52 | Log-Likelihood: | -70.562 |
No. Observations: | 15 | AIC: | 147.1 |
Df Residuals: | 12 | BIC: | 149.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -349.9640 | 628.608 | -0.557 | 0.588 | -1719.584 1019.656 |
C(dose)[T.1] | 45.5412 | 16.409 | 2.775 | 0.017 | 9.790 81.293 |
expression | 35.5098 | 53.470 | 0.664 | 0.519 | -80.992 152.012 |
Omnibus: | 2.510 | Durbin-Watson: | 0.604 |
Prob(Omnibus): | 0.285 | Jarque-Bera (JB): | 1.858 |
Skew: | -0.730 | Prob(JB): | 0.395 |
Kurtosis: | 2.083 | Cond. No. | 971. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:47:52 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.127 |
Model: | OLS | Adj. R-squared: | 0.060 |
Method: | Least Squares | F-statistic: | 1.891 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.192 |
Time: | 03:47:52 | Log-Likelihood: | -74.281 |
No. Observations: | 15 | AIC: | 152.6 |
Df Residuals: | 13 | BIC: | 154.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -913.5187 | 732.396 | -1.247 | 0.234 | -2495.763 668.726 |
expression | 85.2883 | 62.014 | 1.375 | 0.192 | -48.685 219.261 |
Omnibus: | 0.718 | Durbin-Watson: | 1.376 |
Prob(Omnibus): | 0.698 | Jarque-Bera (JB): | 0.479 |
Skew: | -0.401 | Prob(JB): | 0.787 |
Kurtosis: | 2.651 | Cond. No. | 918. |