AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.224 0.282 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.669
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 12.82
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.20e-05
Time: 04:14:13 Log-Likelihood: -100.38
No. Observations: 23 AIC: 208.8
Df Residuals: 19 BIC: 213.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -578.4325 598.756 -0.966 0.346 -1831.644 674.779
C(dose)[T.1] 216.2602 2133.274 0.101 0.920 -4248.733 4681.254
expression 51.9712 49.185 1.057 0.304 -50.974 154.917
expression:C(dose)[T.1] -13.8128 173.453 -0.080 0.937 -376.855 349.229
Omnibus: 0.061 Durbin-Watson: 2.007
Prob(Omnibus): 0.970 Jarque-Bera (JB): 0.142
Skew: 0.095 Prob(JB): 0.931
Kurtosis: 2.665 Cond. No. 6.87e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.669
Model: OLS Adj. R-squared: 0.636
Method: Least Squares F-statistic: 20.24
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.56e-05
Time: 04:14:13 Log-Likelihood: -100.38
No. Observations: 23 AIC: 206.8
Df Residuals: 20 BIC: 210.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -564.9124 559.737 -1.009 0.325 -1732.503 602.678
C(dose)[T.1] 46.3812 10.584 4.382 0.000 24.304 68.459
expression 50.8605 45.980 1.106 0.282 -45.051 146.772
Omnibus: 0.073 Durbin-Watson: 2.016
Prob(Omnibus): 0.964 Jarque-Bera (JB): 0.106
Skew: 0.085 Prob(JB): 0.948
Kurtosis: 2.714 Cond. No. 1.62e+03

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:14:13 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.352
Model: OLS Adj. R-squared: 0.321
Method: Least Squares F-statistic: 11.39
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00286
Time: 04:14:14 Log-Likelihood: -108.12
No. Observations: 23 AIC: 220.2
Df Residuals: 21 BIC: 222.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -2007.8473 618.461 -3.247 0.004 -3294.008 -721.687
expression 170.5761 50.533 3.376 0.003 65.488 275.664
Omnibus: 0.270 Durbin-Watson: 2.236
Prob(Omnibus): 0.874 Jarque-Bera (JB): 0.116
Skew: -0.155 Prob(JB): 0.944
Kurtosis: 2.844 Cond. No. 1.31e+03

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.846 0.048 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.613
Model: OLS Adj. R-squared: 0.508
Method: Least Squares F-statistic: 5.814
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0124
Time: 04:14:14 Log-Likelihood: -68.175
No. Observations: 15 AIC: 144.4
Df Residuals: 11 BIC: 147.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -1085.3006 2312.837 -0.469 0.648 -6175.820 4005.218
C(dose)[T.1] -978.4102 2534.255 -0.386 0.707 -6556.268 4599.447
expression 96.5158 193.647 0.498 0.628 -329.699 522.731
expression:C(dose)[T.1] 87.0876 212.389 0.410 0.690 -380.378 554.553
Omnibus: 1.779 Durbin-Watson: 0.991
Prob(Omnibus): 0.411 Jarque-Bera (JB): 1.388
Skew: -0.606 Prob(JB): 0.499
Kurtosis: 2.134 Cond. No. 6.79e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.607
Model: OLS Adj. R-squared: 0.542
Method: Least Squares F-statistic: 9.281
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00367
Time: 04:14:14 Log-Likelihood: -68.289
No. Observations: 15 AIC: 142.6
Df Residuals: 12 BIC: 144.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -1949.9586 916.472 -2.128 0.055 -3946.780 46.863
C(dose)[T.1] 60.7127 14.277 4.252 0.001 29.605 91.820
expression 168.9119 76.730 2.201 0.048 1.731 336.093
Omnibus: 2.231 Durbin-Watson: 1.043
Prob(Omnibus): 0.328 Jarque-Bera (JB): 1.308
Skew: -0.439 Prob(JB): 0.520
Kurtosis: 1.850 Cond. No. 1.66e+03

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:14:14 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.016
Model: OLS Adj. R-squared: -0.060
Method: Least Squares F-statistic: 0.2065
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.657
Time: 04:14:14 Log-Likelihood: -75.182
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -493.9986 1293.205 -0.382 0.709 -3287.797 2299.800
expression 49.3543 108.605 0.454 0.657 -185.272 283.981
Omnibus: 0.651 Durbin-Watson: 1.756
Prob(Omnibus): 0.722 Jarque-Bera (JB): 0.603
Skew: 0.083 Prob(JB): 0.740
Kurtosis: 2.032 Cond. No. 1.54e+03