AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.011 0.917 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.681
Model: OLS Adj. R-squared: 0.631
Method: Least Squares F-statistic: 13.53
Date: Tue, 28 Jan 2025 Prob (F-statistic): 5.86e-05
Time: 18:28:52 Log-Likelihood: -99.960
No. Observations: 23 AIC: 207.9
Df Residuals: 19 BIC: 212.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 103.6543 58.575 1.770 0.093 -18.944 226.253
C(dose)[T.1] -82.3240 98.493 -0.836 0.414 -288.473 123.825
expression -8.7638 10.328 -0.849 0.407 -30.382 12.854
expression:C(dose)[T.1] 25.9028 18.787 1.379 0.184 -13.418 65.224
Omnibus: 0.365 Durbin-Watson: 1.765
Prob(Omnibus): 0.833 Jarque-Bera (JB): 0.393
Skew: 0.257 Prob(JB): 0.821
Kurtosis: 2.617 Cond. No. 152.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.51
Date: Tue, 28 Jan 2025 Prob (F-statistic): 2.82e-05
Time: 18:28:53 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 59.4817 50.129 1.187 0.249 -45.086 164.049
C(dose)[T.1] 52.7654 10.294 5.126 0.000 31.292 74.239
expression -0.9346 8.820 -0.106 0.917 -19.332 17.463
Omnibus: 0.256 Durbin-Watson: 1.863
Prob(Omnibus): 0.880 Jarque-Bera (JB): 0.444
Skew: 0.078 Prob(JB): 0.801
Kurtosis: 2.338 Cond. No. 64.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 18:28:53 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.189
Model: OLS Adj. R-squared: 0.150
Method: Least Squares F-statistic: 4.878
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0384
Time: 18:28:53 Log-Likelihood: -110.70
No. Observations: 23 AIC: 225.4
Df Residuals: 21 BIC: 227.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 211.4569 60.001 3.524 0.002 86.679 336.235
expression -24.6265 11.150 -2.209 0.038 -47.814 -1.439
Omnibus: 2.027 Durbin-Watson: 2.063
Prob(Omnibus): 0.363 Jarque-Bera (JB): 1.712
Skew: 0.624 Prob(JB): 0.425
Kurtosis: 2.519 Cond. No. 51.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.108 0.313 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.524
Model: OLS Adj. R-squared: 0.394
Method: Least Squares F-statistic: 4.040
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0366
Time: 18:28:53 Log-Likelihood: -69.729
No. Observations: 15 AIC: 147.5
Df Residuals: 11 BIC: 150.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 220.2326 116.453 1.891 0.085 -36.079 476.545
C(dose)[T.1] -92.3931 175.835 -0.525 0.610 -479.403 294.617
expression -27.4252 20.805 -1.318 0.214 -73.217 18.366
expression:C(dose)[T.1] 25.4470 31.138 0.817 0.431 -43.086 93.980
Omnibus: 2.763 Durbin-Watson: 0.740
Prob(Omnibus): 0.251 Jarque-Bera (JB): 1.528
Skew: -0.782 Prob(JB): 0.466
Kurtosis: 2.976 Cond. No. 174.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.495
Model: OLS Adj. R-squared: 0.411
Method: Least Squares F-statistic: 5.890
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0165
Time: 18:28:53 Log-Likelihood: -70.171
No. Observations: 15 AIC: 146.3
Df Residuals: 12 BIC: 148.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 156.9358 85.751 1.830 0.092 -29.900 343.772
C(dose)[T.1] 50.7581 15.133 3.354 0.006 17.787 83.730
expression -16.0647 15.264 -1.052 0.313 -49.321 17.192
Omnibus: 4.474 Durbin-Watson: 0.746
Prob(Omnibus): 0.107 Jarque-Bera (JB): 2.186
Skew: -0.895 Prob(JB): 0.335
Kurtosis: 3.542 Cond. No. 66.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 18:28:53 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.022
Model: OLS Adj. R-squared: -0.053
Method: Least Squares F-statistic: 0.2956
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.596
Time: 18:28:53 Log-Likelihood: -75.131
No. Observations: 15 AIC: 154.3
Df Residuals: 13 BIC: 155.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 155.7780 114.678 1.358 0.197 -91.970 403.526
expression -11.0449 20.314 -0.544 0.596 -54.931 32.841
Omnibus: 2.125 Durbin-Watson: 1.765
Prob(Omnibus): 0.346 Jarque-Bera (JB): 1.036
Skew: 0.200 Prob(JB): 0.596
Kurtosis: 1.776 Cond. No. 66.4