AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.998 | 0.330 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.667 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 12.68 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 8.79e-05 |
Time: | 18:56:13 | Log-Likelihood: | -100.46 |
No. Observations: | 23 | AIC: | 208.9 |
Df Residuals: | 19 | BIC: | 213.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 433.6463 | 526.819 | 0.823 | 0.421 | -668.999 1536.292 |
C(dose)[T.1] | -106.3015 | 611.644 | -0.174 | 0.864 | -1386.488 1173.885 |
expression | -39.1469 | 54.349 | -0.720 | 0.480 | -152.900 74.606 |
expression:C(dose)[T.1] | 16.4821 | 63.089 | 0.261 | 0.797 | -115.564 148.528 |
Omnibus: | 2.171 | Durbin-Watson: | 2.009 |
Prob(Omnibus): | 0.338 | Jarque-Bera (JB): | 1.107 |
Skew: | -0.030 | Prob(JB): | 0.575 |
Kurtosis: | 1.927 | Cond. No. | 1.98e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.666 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 19.92 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 1.74e-05 |
Time: | 18:56:13 | Log-Likelihood: | -100.50 |
No. Observations: | 23 | AIC: | 207.0 |
Df Residuals: | 20 | BIC: | 210.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 315.0882 | 261.271 | 1.206 | 0.242 | -229.913 860.090 |
C(dose)[T.1] | 53.4756 | 8.560 | 6.247 | 0.000 | 35.619 71.332 |
expression | -26.9152 | 26.949 | -0.999 | 0.330 | -83.129 29.299 |
Omnibus: | 2.075 | Durbin-Watson: | 1.964 |
Prob(Omnibus): | 0.354 | Jarque-Bera (JB): | 1.083 |
Skew: | 0.027 | Prob(JB): | 0.582 |
Kurtosis: | 1.938 | Cond. No. | 600. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 18:56:13 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.013 |
Model: | OLS | Adj. R-squared: | -0.034 |
Method: | Least Squares | F-statistic: | 0.2867 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.598 |
Time: | 18:56:13 | Log-Likelihood: | -112.95 |
No. Observations: | 23 | AIC: | 229.9 |
Df Residuals: | 21 | BIC: | 232.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 314.2343 | 438.028 | 0.717 | 0.481 | -596.695 1225.164 |
expression | -24.1892 | 45.174 | -0.535 | 0.598 | -118.134 69.756 |
Omnibus: | 3.087 | Durbin-Watson: | 2.525 |
Prob(Omnibus): | 0.214 | Jarque-Bera (JB): | 1.520 |
Skew: | 0.286 | Prob(JB): | 0.468 |
Kurtosis: | 1.878 | Cond. No. | 599. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.027 | 0.872 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.577 |
Model: | OLS | Adj. R-squared: | 0.462 |
Method: | Least Squares | F-statistic: | 5.004 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0199 |
Time: | 18:56:13 | Log-Likelihood: | -68.845 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 11 | BIC: | 148.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -524.9171 | 393.725 | -1.333 | 0.209 | -1391.500 341.666 |
C(dose)[T.1] | 867.5051 | 450.220 | 1.927 | 0.080 | -123.423 1858.433 |
expression | 66.9662 | 44.496 | 1.505 | 0.160 | -30.968 164.901 |
expression:C(dose)[T.1] | -92.3883 | 50.815 | -1.818 | 0.096 | -204.231 19.454 |
Omnibus: | 3.091 | Durbin-Watson: | 1.021 |
Prob(Omnibus): | 0.213 | Jarque-Bera (JB): | 1.308 |
Skew: | -0.693 | Prob(JB): | 0.520 |
Kurtosis: | 3.413 | Cond. No. | 843. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 4.910 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0277 |
Time: | 18:56:13 | Log-Likelihood: | -70.816 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 101.6870 | 207.860 | 0.489 | 0.634 | -351.201 554.575 |
C(dose)[T.1] | 49.3629 | 15.754 | 3.133 | 0.009 | 15.038 83.688 |
expression | -3.8730 | 23.463 | -0.165 | 0.872 | -54.995 47.249 |
Omnibus: | 2.846 | Durbin-Watson: | 0.841 |
Prob(Omnibus): | 0.241 | Jarque-Bera (JB): | 1.902 |
Skew: | -0.858 | Prob(JB): | 0.386 |
Kurtosis: | 2.685 | Cond. No. | 239. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 18:56:13 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.077 |
Method: | Least Squares | F-statistic: | 0.0007546 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.979 |
Time: | 18:56:13 | Log-Likelihood: | -75.300 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 86.2766 | 269.205 | 0.320 | 0.754 | -495.305 667.859 |
expression | 0.8333 | 30.334 | 0.027 | 0.979 | -64.699 66.366 |
Omnibus: | 0.637 | Durbin-Watson: | 1.618 |
Prob(Omnibus): | 0.727 | Jarque-Bera (JB): | 0.594 |
Skew: | 0.056 | Prob(JB): | 0.743 |
Kurtosis: | 2.031 | Cond. No. | 238. |