AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.247 0.277 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.731
Model: OLS Adj. R-squared: 0.689
Method: Least Squares F-statistic: 17.21
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.20e-05
Time: 22:48:43 Log-Likelihood: -98.003
No. Observations: 23 AIC: 204.0
Df Residuals: 19 BIC: 208.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 72.3034 186.425 0.388 0.702 -317.888 462.494
C(dose)[T.1] 917.9293 411.779 2.229 0.038 56.066 1779.793
expression -1.8396 18.944 -0.097 0.924 -41.490 37.811
expression:C(dose)[T.1] -84.6514 40.656 -2.082 0.051 -169.745 0.442
Omnibus: 0.503 Durbin-Watson: 1.485
Prob(Omnibus): 0.778 Jarque-Bera (JB): 0.579
Skew: 0.043 Prob(JB): 0.748
Kurtosis: 2.227 Cond. No. 1.24e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.670
Model: OLS Adj. R-squared: 0.637
Method: Least Squares F-statistic: 20.27
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.55e-05
Time: 22:48:43 Log-Likelihood: -100.37
No. Observations: 23 AIC: 206.7
Df Residuals: 20 BIC: 210.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 253.0970 178.194 1.420 0.171 -118.609 624.803
C(dose)[T.1] 60.7992 10.819 5.620 0.000 38.232 83.367
expression -20.2195 18.106 -1.117 0.277 -57.987 17.548
Omnibus: 3.169 Durbin-Watson: 1.952
Prob(Omnibus): 0.205 Jarque-Bera (JB): 1.322
Skew: -0.060 Prob(JB): 0.516
Kurtosis: 1.832 Cond. No. 425.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:48:44 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.148
Model: OLS Adj. R-squared: 0.107
Method: Least Squares F-statistic: 3.648
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0699
Time: 22:48:44 Log-Likelihood: -111.26
No. Observations: 23 AIC: 226.5
Df Residuals: 21 BIC: 228.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -347.0851 223.561 -1.553 0.135 -812.005 117.834
expression 42.6249 22.317 1.910 0.070 -3.786 89.036
Omnibus: 3.655 Durbin-Watson: 2.120
Prob(Omnibus): 0.161 Jarque-Bera (JB): 1.955
Skew: 0.444 Prob(JB): 0.376
Kurtosis: 1.882 Cond. No. 340.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.420 0.529 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.526
Model: OLS Adj. R-squared: 0.396
Method: Least Squares F-statistic: 4.061
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0361
Time: 22:48:44 Log-Likelihood: -69.709
No. Observations: 15 AIC: 147.4
Df Residuals: 11 BIC: 150.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -544.3265 474.257 -1.148 0.275 -1588.160 499.507
C(dose)[T.1] 816.5695 661.122 1.235 0.243 -638.550 2271.689
expression 70.5410 54.671 1.290 0.223 -49.789 190.871
expression:C(dose)[T.1] -88.5210 76.287 -1.160 0.270 -256.427 79.386
Omnibus: 2.057 Durbin-Watson: 1.402
Prob(Omnibus): 0.358 Jarque-Bera (JB): 1.210
Skew: -0.689 Prob(JB): 0.546
Kurtosis: 2.811 Cond. No. 1.02e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.467
Model: OLS Adj. R-squared: 0.379
Method: Least Squares F-statistic: 5.266
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0228
Time: 22:48:44 Log-Likelihood: -70.575
No. Observations: 15 AIC: 147.1
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -150.0525 335.601 -0.447 0.663 -881.263 581.158
C(dose)[T.1] 49.6294 15.485 3.205 0.008 15.890 83.369
expression 25.0776 38.676 0.648 0.529 -59.190 109.345
Omnibus: 3.818 Durbin-Watson: 0.890
Prob(Omnibus): 0.148 Jarque-Bera (JB): 2.384
Skew: -0.975 Prob(JB): 0.304
Kurtosis: 2.913 Cond. No. 383.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:48:44 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.012
Model: OLS Adj. R-squared: -0.064
Method: Least Squares F-statistic: 0.1522
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.703
Time: 22:48:44 Log-Likelihood: -75.213
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -77.2752 438.258 -0.176 0.863 -1024.074 869.523
expression 19.7321 50.575 0.390 0.703 -89.529 128.994
Omnibus: 1.257 Durbin-Watson: 1.760
Prob(Omnibus): 0.533 Jarque-Bera (JB): 0.800
Skew: 0.127 Prob(JB): 0.670
Kurtosis: 1.898 Cond. No. 381.