AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.643 | 0.432 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.696 |
Model: | OLS | Adj. R-squared: | 0.648 |
Method: | Least Squares | F-statistic: | 14.48 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.80e-05 |
Time: | 23:00:41 | Log-Likelihood: | -99.424 |
No. Observations: | 23 | AIC: | 206.8 |
Df Residuals: | 19 | BIC: | 211.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -255.3696 | 202.936 | -1.258 | 0.223 | -680.119 169.380 |
C(dose)[T.1] | 598.2878 | 369.448 | 1.619 | 0.122 | -174.976 1371.551 |
expression | 31.4853 | 20.631 | 1.526 | 0.143 | -11.696 74.666 |
expression:C(dose)[T.1] | -54.3791 | 36.428 | -1.493 | 0.152 | -130.623 21.865 |
Omnibus: | 0.515 | Durbin-Watson: | 1.991 |
Prob(Omnibus): | 0.773 | Jarque-Bera (JB): | 0.583 |
Skew: | -0.010 | Prob(JB): | 0.747 |
Kurtosis: | 2.220 | Cond. No. | 1.08e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.660 |
Model: | OLS | Adj. R-squared: | 0.626 |
Method: | Least Squares | F-statistic: | 19.41 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.07e-05 |
Time: | 23:00:41 | Log-Likelihood: | -100.70 |
No. Observations: | 23 | AIC: | 207.4 |
Df Residuals: | 20 | BIC: | 210.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -83.8682 | 172.345 | -0.487 | 0.632 | -443.374 275.638 |
C(dose)[T.1] | 47.0379 | 11.673 | 4.030 | 0.001 | 22.688 71.388 |
expression | 14.0429 | 17.518 | 0.802 | 0.432 | -22.498 50.584 |
Omnibus: | 0.127 | Durbin-Watson: | 2.054 |
Prob(Omnibus): | 0.938 | Jarque-Bera (JB): | 0.349 |
Skew: | -0.027 | Prob(JB): | 0.840 |
Kurtosis: | 2.399 | Cond. No. | 407. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 23:00:41 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.384 |
Model: | OLS | Adj. R-squared: | 0.355 |
Method: | Least Squares | F-statistic: | 13.09 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00161 |
Time: | 23:00:41 | Log-Likelihood: | -107.53 |
No. Observations: | 23 | AIC: | 219.1 |
Df Residuals: | 21 | BIC: | 221.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -538.7810 | 171.063 | -3.150 | 0.005 | -894.525 -183.037 |
expression | 61.5605 | 17.017 | 3.618 | 0.002 | 26.172 96.949 |
Omnibus: | 3.366 | Durbin-Watson: | 2.511 |
Prob(Omnibus): | 0.186 | Jarque-Bera (JB): | 1.677 |
Skew: | 0.344 | Prob(JB): | 0.432 |
Kurtosis: | 1.870 | Cond. No. | 307. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
6.079 | 0.030 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.655 |
Model: | OLS | Adj. R-squared: | 0.560 |
Method: | Least Squares | F-statistic: | 6.948 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00686 |
Time: | 23:00:41 | Log-Likelihood: | -67.328 |
No. Observations: | 15 | AIC: | 142.7 |
Df Residuals: | 11 | BIC: | 145.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -256.0593 | 366.933 | -0.698 | 0.500 | -1063.673 551.555 |
C(dose)[T.1] | -317.3764 | 466.020 | -0.681 | 0.510 | -1343.079 708.326 |
expression | 34.0708 | 38.634 | 0.882 | 0.397 | -50.961 119.103 |
expression:C(dose)[T.1] | 39.8277 | 49.378 | 0.807 | 0.437 | -68.852 148.508 |
Omnibus: | 0.644 | Durbin-Watson: | 1.275 |
Prob(Omnibus): | 0.725 | Jarque-Bera (JB): | 0.669 |
Skew: | -0.338 | Prob(JB): | 0.716 |
Kurtosis: | 2.216 | Cond. No. | 955. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.634 |
Model: | OLS | Adj. R-squared: | 0.573 |
Method: | Least Squares | F-statistic: | 10.40 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00240 |
Time: | 23:00:41 | Log-Likelihood: | -67.759 |
No. Observations: | 15 | AIC: | 141.5 |
Df Residuals: | 12 | BIC: | 143.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -487.5462 | 225.281 | -2.164 | 0.051 | -978.392 3.300 |
C(dose)[T.1] | 58.3512 | 13.350 | 4.371 | 0.001 | 29.264 87.438 |
expression | 58.4518 | 23.707 | 2.466 | 0.030 | 6.799 110.105 |
Omnibus: | 1.150 | Durbin-Watson: | 1.564 |
Prob(Omnibus): | 0.563 | Jarque-Bera (JB): | 0.776 |
Skew: | -0.142 | Prob(JB): | 0.678 |
Kurtosis: | 1.922 | Cond. No. | 336. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 23:00:42 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.052 |
Model: | OLS | Adj. R-squared: | -0.021 |
Method: | Least Squares | F-statistic: | 0.7077 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.415 |
Time: | 23:00:42 | Log-Likelihood: | -74.903 |
No. Observations: | 15 | AIC: | 153.8 |
Df Residuals: | 13 | BIC: | 155.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -185.2002 | 331.638 | -0.558 | 0.586 | -901.661 531.261 |
expression | 29.6319 | 35.224 | 0.841 | 0.415 | -46.464 105.728 |
Omnibus: | 0.230 | Durbin-Watson: | 1.964 |
Prob(Omnibus): | 0.891 | Jarque-Bera (JB): | 0.414 |
Skew: | 0.106 | Prob(JB): | 0.813 |
Kurtosis: | 2.214 | Cond. No. | 319. |