AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.728 0.404 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.693
Model: OLS Adj. R-squared: 0.645
Method: Least Squares F-statistic: 14.30
Date: Thu, 21 Nov 2024 Prob (F-statistic): 4.12e-05
Time: 05:21:02 Log-Likelihood: -99.523
No. Observations: 23 AIC: 207.0
Df Residuals: 19 BIC: 211.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 119.1895 485.113 0.246 0.809 -896.164 1134.543
C(dose)[T.1] -1119.2251 830.143 -1.348 0.193 -2856.734 618.284
expression -5.6449 42.139 -0.134 0.895 -93.843 82.553
expression:C(dose)[T.1] 98.8335 70.625 1.399 0.178 -48.987 246.654
Omnibus: 0.618 Durbin-Watson: 1.696
Prob(Omnibus): 0.734 Jarque-Bera (JB): 0.166
Skew: -0.207 Prob(JB): 0.920
Kurtosis: 3.035 Cond. No. 2.84e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.628
Method: Least Squares F-statistic: 19.53
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.98e-05
Time: 05:21:03 Log-Likelihood: -100.65
No. Observations: 23 AIC: 207.3
Df Residuals: 20 BIC: 210.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -285.8347 398.536 -0.717 0.482 -1117.165 545.496
C(dose)[T.1] 42.2899 15.550 2.720 0.013 9.853 74.727
expression 29.5397 34.617 0.853 0.404 -42.670 101.750
Omnibus: 0.018 Durbin-Watson: 2.122
Prob(Omnibus): 0.991 Jarque-Bera (JB): 0.191
Skew: 0.053 Prob(JB): 0.909
Kurtosis: 2.566 Cond. No. 1.09e+03

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:21:03 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.536
Model: OLS Adj. R-squared: 0.514
Method: Least Squares F-statistic: 24.27
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.12e-05
Time: 05:21:03 Log-Likelihood: -104.27
No. Observations: 23 AIC: 212.5
Df Residuals: 21 BIC: 214.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -1181.8657 256.106 -4.615 0.000 -1714.468 -649.264
expression 107.9174 21.904 4.927 0.000 62.366 153.469
Omnibus: 0.284 Durbin-Watson: 2.413
Prob(Omnibus): 0.867 Jarque-Bera (JB): 0.461
Skew: -0.001 Prob(JB): 0.794
Kurtosis: 2.307 Cond. No. 614.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.131 0.308 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.516
Model: OLS Adj. R-squared: 0.384
Method: Least Squares F-statistic: 3.912
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0399
Time: 05:21:03 Log-Likelihood: -69.854
No. Observations: 15 AIC: 147.7
Df Residuals: 11 BIC: 150.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -1434.1477 1229.279 -1.167 0.268 -4139.773 1271.478
C(dose)[T.1] 1275.4850 1832.592 0.696 0.501 -2758.023 5308.993
expression 115.7083 94.722 1.222 0.247 -92.773 324.189
expression:C(dose)[T.1] -94.6682 140.579 -0.673 0.515 -404.079 214.743
Omnibus: 2.060 Durbin-Watson: 0.682
Prob(Omnibus): 0.357 Jarque-Bera (JB): 1.479
Skew: -0.732 Prob(JB): 0.477
Kurtosis: 2.527 Cond. No. 4.07e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.496
Model: OLS Adj. R-squared: 0.412
Method: Least Squares F-statistic: 5.911
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0163
Time: 05:21:03 Log-Likelihood: -70.157
No. Observations: 15 AIC: 146.3
Df Residuals: 12 BIC: 148.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -876.3869 887.438 -0.988 0.343 -2809.949 1057.175
C(dose)[T.1] 41.4375 16.722 2.478 0.029 5.004 77.871
expression 72.7284 68.379 1.064 0.308 -76.256 221.713
Omnibus: 2.016 Durbin-Watson: 0.655
Prob(Omnibus): 0.365 Jarque-Bera (JB): 1.506
Skew: -0.620 Prob(JB): 0.471
Kurtosis: 2.067 Cond. No. 1.55e+03

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:21:03 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.238
Model: OLS Adj. R-squared: 0.180
Method: Least Squares F-statistic: 4.071
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0648
Time: 05:21:03 Log-Likelihood: -73.257
No. Observations: 15 AIC: 150.5
Df Residuals: 13 BIC: 151.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -1817.8211 947.410 -1.919 0.077 -3864.576 228.933
expression 146.6522 72.684 2.018 0.065 -10.371 303.675
Omnibus: 1.976 Durbin-Watson: 1.350
Prob(Omnibus): 0.372 Jarque-Bera (JB): 1.294
Skew: 0.476 Prob(JB): 0.524
Kurtosis: 1.922 Cond. No. 1.40e+03