AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.783 0.387 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.722
Model: OLS Adj. R-squared: 0.678
Method: Least Squares F-statistic: 16.47
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.62e-05
Time: 22:50:03 Log-Likelihood: -98.372
No. Observations: 23 AIC: 204.7
Df Residuals: 19 BIC: 209.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -306.8778 179.543 -1.709 0.104 -682.665 68.909
C(dose)[T.1] 636.5664 289.180 2.201 0.040 31.305 1241.828
expression 40.7907 20.273 2.012 0.059 -1.641 83.222
expression:C(dose)[T.1] -65.4300 32.292 -2.026 0.057 -133.019 2.158
Omnibus: 0.593 Durbin-Watson: 1.890
Prob(Omnibus): 0.744 Jarque-Bera (JB): 0.649
Skew: -0.158 Prob(JB): 0.723
Kurtosis: 2.240 Cond. No. 810.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.628
Method: Least Squares F-statistic: 19.61
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.93e-05
Time: 22:50:03 Log-Likelihood: -100.62
No. Observations: 23 AIC: 207.2
Df Residuals: 20 BIC: 210.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -78.6054 150.258 -0.523 0.607 -392.038 234.827
C(dose)[T.1] 50.8820 9.040 5.629 0.000 32.025 69.739
expression 15.0035 16.961 0.885 0.387 -20.376 50.383
Omnibus: 0.284 Durbin-Watson: 1.959
Prob(Omnibus): 0.868 Jarque-Bera (JB): 0.425
Skew: -0.211 Prob(JB): 0.809
Kurtosis: 2.485 Cond. No. 317.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:50:03 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.127
Model: OLS Adj. R-squared: 0.086
Method: Least Squares F-statistic: 3.062
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0947
Time: 22:50:03 Log-Likelihood: -111.54
No. Observations: 23 AIC: 227.1
Df Residuals: 21 BIC: 229.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -316.0282 226.242 -1.397 0.177 -786.525 154.468
expression 44.3143 25.323 1.750 0.095 -8.347 96.976
Omnibus: 3.678 Durbin-Watson: 2.381
Prob(Omnibus): 0.159 Jarque-Bera (JB): 2.061
Skew: 0.484 Prob(JB): 0.357
Kurtosis: 1.899 Cond. No. 304.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.652 0.223 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.543
Model: OLS Adj. R-squared: 0.418
Method: Least Squares F-statistic: 4.357
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0297
Time: 22:50:03 Log-Likelihood: -69.426
No. Observations: 15 AIC: 146.9
Df Residuals: 11 BIC: 149.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -400.1791 318.689 -1.256 0.235 -1101.608 301.250
C(dose)[T.1] 411.9245 445.271 0.925 0.375 -568.110 1391.959
expression 54.1397 36.876 1.468 0.170 -27.024 135.304
expression:C(dose)[T.1] -41.9921 51.534 -0.815 0.432 -155.418 71.433
Omnibus: 1.563 Durbin-Watson: 1.437
Prob(Omnibus): 0.458 Jarque-Bera (JB): 1.079
Skew: -0.625 Prob(JB): 0.583
Kurtosis: 2.597 Cond. No. 698.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.515
Model: OLS Adj. R-squared: 0.435
Method: Least Squares F-statistic: 6.383
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0129
Time: 22:50:04 Log-Likelihood: -69.866
No. Observations: 15 AIC: 145.7
Df Residuals: 12 BIC: 147.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -214.4679 219.613 -0.977 0.348 -692.965 264.029
C(dose)[T.1] 49.3028 14.757 3.341 0.006 17.150 81.456
expression 32.6380 25.396 1.285 0.223 -22.696 87.972
Omnibus: 0.967 Durbin-Watson: 1.125
Prob(Omnibus): 0.617 Jarque-Bera (JB): 0.873
Skew: -0.454 Prob(JB): 0.646
Kurtosis: 2.243 Cond. No. 262.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:50:04 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.065
Model: OLS Adj. R-squared: -0.007
Method: Least Squares F-statistic: 0.9002
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.360
Time: 22:50:04 Log-Likelihood: -74.798
No. Observations: 15 AIC: 153.6
Df Residuals: 13 BIC: 155.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -184.0618 292.889 -0.628 0.541 -816.809 448.685
expression 32.1619 33.898 0.949 0.360 -41.071 105.395
Omnibus: 1.800 Durbin-Watson: 1.663
Prob(Omnibus): 0.407 Jarque-Bera (JB): 1.217
Skew: 0.456 Prob(JB): 0.544
Kurtosis: 1.944 Cond. No. 261.